Skip to main content
Log in

Carboxymethyl cellulose/poly(acrylic acid) interpenetrating polymer network hydrogels as multifunctional adsorbents

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Interpenetrating polymer network (IPN) hydrogels were prepared by mixing carboxymethyl cellulose (CMC) solution and crosslinked poly(acrylic acid) (cPAA) single IPN hydrogel at mass ratios 100:0, 25:75, 50:50, 75:25 and 0:100 and subsequent crosslinking of CMC chains with citric acid, aimed towards the creation of full IPN hydrogels. The resulting CMC:cPAA hydrogels were freeze-dried for the determination of density, swelling degree, compressive modulus and thermal behavior. Morphological and structural parameters were determined by means of scanning electron microscopy, Fourier transform infrared spectroscopy in the attenuated total reflectance mode (FTIR-ATR) and X-ray microtomography (CT) analyses. The efficiency of CMC:cPAA hydrogels as adsorbents for methylene blue (MB) dye at pH 7 and Cu2+ ions at pH 4.5 was systematically investigated at (24 ± 1) °C and evaluated with Langmuir, Freundlich and Dubinin–Radushkevitch adsorption models and kinetic equations. The CMC:cPAA 50:50 hydrogels were particularly interesting because they presented the highest compression modulus (141 ± 3 kPa), swelling degree of 58 ± 2 gwater/g and maximum adsorption capacity (qmax) for MB dye and Cu2+ ions as 613 mg g−1 and 250 mg g−1, respectively. The adsorption kinetics of MB and Cu2+ ions followed the pseudo-second order equation. Fitting with the intraparticle diffusion model showed that in both cases, the adsorbate molecules first diffuse rapidly from the medium to the adsorbent surface, and then in a second slower stage, they diffuse into the network macropores. The hydrogels could be recycled five times without losing efficiency.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

Download references

Acknowledgments

Authors gratefully acknowledge financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Grant 306848/2017 and 157034/2017-8) and Unified Scholarship Program from the University of São Paulo. We also thank LNNano-CNPEM (Project Micro CT-22728, Campinas, Brazil) for the micro tomography measurements. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise F. S. Petri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toledo, P.V.O., Limeira, D.P.C., Siqueira, N.C. et al. Carboxymethyl cellulose/poly(acrylic acid) interpenetrating polymer network hydrogels as multifunctional adsorbents. Cellulose 26, 597–615 (2019). https://doi.org/10.1007/s10570-018-02232-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-02232-9

Keywords

Navigation