, Volume 25, Issue 2, pp 1395–1411 | Cite as

Cellulose paper azide as a molecular platform for versatile click ligations: application to the preparation of hydrophobic paper surface

  • Medy C. Nongbe
  • Guillaume Bretel
  • Lynda Ekou
  • Tchirioua Ekou
  • Mike Robitzer
  • Erwan Le Grognec
  • François-Xavier Felpin
Original Paper


A cellulose paper sheet, chemically modified with azide functions, is described to be a versatile molecular platform for copper-catalyzed 1,3-dipolar cycloaddition with terminal alkynes. This 3-step methodology was carefully optimized at each stage of the process with the support of experimental and physical evidences. Our approach allows the surface coverage of structurally diverse molecular architectures through a covalent grafting with non-hydrolysable chemical linkers. This robust linkage is highlighted with the surface hydrophobization of cellulose paper through the click ligation of cholesterol units as renewable and inexpensive hydrophobic agents. The resulting water-resistant and water-repellent paper-based material shows powerful oleophilicity properties and displays a high contact angle of 139.6°.


Cellulose Paper Click Cycloaddition Hydrophobicity 



We gratefully acknowledge the University of Nantes and the “Centre National de la Recherche Scientifique” (CNRS) for financial support. F.-X. Felpin is a member of the “Institut Universitaire de France” (IUF). M.C. Nongbe thanks the ‘‘Ministère de l’Enseignement Supérieur et de la Recherche Scientifique de Côte d’Ivoire” for a visiting grant in France. We acknowledge Christine Labrugère (PLACAMAT, University of Bordeaux), François-Xavier Lefèvre and Denis Loquet (CEISAM, University of Nantes) for XPS, SEM and elemental analyses, respectively.


  1. Aarne N, Laine J, Hänninen T, Rantanen V, Seitsonen J, Ruokolainen J, Kontturi E (2013) controlled hydrophobic functionalization of natural fibers through self-assembly of amphiphilic diblock copolymer micelles. Chemsuschem 6:1203–1208. CrossRefGoogle Scholar
  2. Arbatan T, Zhang L, Fang X-Y, Shen W (2012) Cellulose nanofibers as binder for fabrication of superhydrophobic paper. Chem Eng J 210:74–79. CrossRefGoogle Scholar
  3. Balu B, Berry AD, Hess DW, Breedveld V (2009) Patterning of superhydrophobic paper to control the mobility of micro-liter drops for two-dimensional lab-on-paper applications. Lab Chip 9:3066–3075. CrossRefGoogle Scholar
  4. Barona D, Amirfazli A (2011) Producing a superhydrophobic paper and altering its repellency through ink-jet printing. Lab Chip 11:936–940. CrossRefGoogle Scholar
  5. Belgacem MN, Gandini A (2011) Monomers, polymers and composites from renewable resources. Elsevier, AmsterdamGoogle Scholar
  6. Bongiovanni R, Marchi S, Zeno E, Pollicino A, Thomas RR (2013) Water resistance improvement of filter paper by a UV-grafting modification with a fluoromonomer. Colloids Surfaces A Physicochem Eng Asp 418:52–59. CrossRefGoogle Scholar
  7. Carlsson L, Malmstrom E, Carlmark A (2012) Surface-initiated ring-opening metathesis polymerisation from cellulose fibres. Polym Chem 3:727–733. CrossRefGoogle Scholar
  8. Chitnis G, Ziaie B (2012) Waterproof active paper via laser surface micropatterning of magnetic nanoparticles. ACS Appl Mater Interfaces 4:4435–4439. CrossRefGoogle Scholar
  9. d’Halluin M, Rull-Barrull J, Le Grognec E, Jacquemin D, Felpin F-X (2016) Writing and erasing hidden optical information on covalently modified cellulose paper. Chem Commun 52:7672–7675. CrossRefGoogle Scholar
  10. d’Halluin M, Rull-Barrull J, Bretel G, Labrugère C, Le Grognec E, Felpin F-X (2017) Chemically modified cellulose filter paper for heavy metal remediation in water. ACS Sustain Chem Eng 5:1965–1973. CrossRefGoogle Scholar
  11. Derikvand F, Yin DT, Barrett R, Brumer H (2016) Cellulose-based biosensors for esterase detection. Anal Chem 88:2989–2993. CrossRefGoogle Scholar
  12. Du C, Wang J, Chen Z, Chen D (2014) Durable superhydrophobic and superoleophilic filter paper for oil–water separation prepared by a colloidal deposition method. Appl Surf Sci 313:304–310. CrossRefGoogle Scholar
  13. Eyley S, Thielemans W (2011) Imidazolium grafted cellulose nanocrystals for ion exchange applications. Chem Commun 47:4177–4179. CrossRefGoogle Scholar
  14. Eyley S, Shariki S, Dale SEC, Bending S, Marken F, Thielemans W (2012) Ferrocene-decorated nanocrystalline cellulose with charge carrier mobility. Langmuir 28:6514–6519. CrossRefGoogle Scholar
  15. Faugeras P-A, Brouillette F, Zerrouki R (2012) Crosslinked cellulose developed by CuAAC, a route to new materials. Carbohydr Res 356:247–251. CrossRefGoogle Scholar
  16. Filpponen I, Sadeghifar H, Argyropoulos DS (2011) Photoresponsive cellulose nanocrystals. Nanomater Nanotechnol 1:34–43CrossRefGoogle Scholar
  17. Filpponen I, Kontturi E, Nummelin S, Rosilo H, Kolehmainen E, Ikkala O, Laine J (2012) Generic method for modular surface modification of cellulosic materials in aqueous medium by sequential “click” reaction and adsorption. Biomacromolecules 13:736–742. CrossRefGoogle Scholar
  18. Ge B, Zhu X, Li Y, Men X, Li P, Zhang Z (2015) The efficient separation of surfactant-stabilized water-in-oil emulsions with a superhydrophobic filter paper. Appl Phys A 121:1291–1297. CrossRefGoogle Scholar
  19. Geissler A, Loyal F, Biesalski M, Zhang K (2014) Thermo-responsive superhydrophobic paper using nanostructured cellulose stearoyl ester. Cellulose 21:357–366. CrossRefGoogle Scholar
  20. Gericke M, Schaller J, Liebert T, Fardim P, Meister F, Heinze T (2012) Studies on the tosylation of cellulose in mixtures of ionic liquids and a co-solvent. Carbohydr Polym 89:526–536. CrossRefGoogle Scholar
  21. Goldmann AS, Tischer T, Barner L, Bruns M, Barner-Kowollik C (2011) Mild and modular surface modification of cellulose via hetero Diels–Alder (HDA) cycloaddition. Biomacromolecules 12:1137–1145. CrossRefGoogle Scholar
  22. Gomes HIAS, Sales MGF (2015) Development of paper-based color test-strip for drug detection in aquatic environment: application to oxytetracycline. Biosens Bioelectron 65:54–61. CrossRefGoogle Scholar
  23. Granström M et al (2008) Tosylation and acylation of cellulose in 1-allyl-3-methylimidazolium chloride. Cellulose 15:481–488. CrossRefGoogle Scholar
  24. Große S, Wilke P, Börner HG (2016) Easy access to functional patterns on cellulose paper by combining laser printing and material-specific peptide adsorption. Angew Chem Int Ed 55:11266–11270. CrossRefGoogle Scholar
  25. Gurgel LVA, Júnior OK, Gil RPdF, Gil LF (2008) Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride. Bioresour Technol 99:3077–3083. CrossRefGoogle Scholar
  26. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542. CrossRefGoogle Scholar
  27. Hafrén J, Zou W, Córdova A (2006) Heterogeneous ‘organoclick’ derivatization of polysaccharides. Macromol Rapid Commun 27:1362–1366. CrossRefGoogle Scholar
  28. Hansson S, Östmark E, Carlmark A, Malmström E (2009) ARGET ATRP for versatile grafting of cellulose using various monomers. ACS Appl Mater Interfaces 1:2651–2659. CrossRefGoogle Scholar
  29. Hein CD, Liu X-M, Wang D (2008) Click chemistry a powerful tool for pharmaceutical sciences. Pharm Res 25:2216–2230. CrossRefGoogle Scholar
  30. Heuser E, Heath M, Shockley WH (1950) The rate of esterification of primary and secondary hydroxyls of cellulose with p-toluenesulfonyl (Tosyl) chloride1. J Am Chem Soc 72:670–674. CrossRefGoogle Scholar
  31. Hon DN-S (1994) Cellulose: a random walk along its historical path. Cellulose 1:1–25. CrossRefGoogle Scholar
  32. Hu Z, Zen X, Gong J, Deng Y (2009) Water resistance improvement of paper by superhydrophobic modification with microsized CaCO3 and fatty acid coating. Colloids Surfaces A Physicochem Eng Asp 351:65–70. CrossRefGoogle Scholar
  33. Huang L, Chen K, Lin C, Yang R, Gerhardt RA (2011) Fabrication and characterization of superhydrophobic high opacity paper with titanium dioxide nanoparticles. J Mater Sci 46:2600–2605. CrossRefGoogle Scholar
  34. Hufendiek A, Trouillet V, Meier MAR, Barner-Kowollik C (2014) Temperature responsive cellulose-graft-copolymers via cellulose functionalization in an ionic liquid and RAFT polymerization. Biomacromolecules 15:2563–2572. CrossRefGoogle Scholar
  35. Huisgen R (1963) 1,3-Dipolar cycloadditions. Past and future. Angew Chem Int Ed Engl 2:565–598. CrossRefGoogle Scholar
  36. Isogai A (2001) Material science of cellulose. Tokyo University Press, TokyoGoogle Scholar
  37. Jirakittiwut N, Panyain N, Nuanyai T, Vilaivan T, Praneenararat T (2015) Pyrrolidinyl peptide nucleic acids immobilised on cellulose paper as a DNA sensor. RSC Adv 5:24110–24114. CrossRefGoogle Scholar
  38. Kim J-H et al (2015) Review of nanocellulose for sustainable future materials. Int J Precis Eng Manuf Green Technol 2:197–213. CrossRefGoogle Scholar
  39. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. CrossRefGoogle Scholar
  40. Koga H, Kitaoka T, Isogai A (2011) In situ modification of cellulose paper with amino groups for catalytic applications. J Mater Chem 21:9356–9361. CrossRefGoogle Scholar
  41. Kong L, Wang Q, Xiong S, Wang Y (2014) Turning low-cost filter papers to highly efficient membranes for oil/water separation by atomic-layer-deposition-enabled hydrophobization. Ind Eng Chem Res 53:16516–16522. CrossRefGoogle Scholar
  42. Krouit M, Bras J, Belgacem MN (2008) Cellulose surface grafting with polycaprolactone by heterogeneous click-chemistry. Eur Polym J 44:4074–4081. CrossRefGoogle Scholar
  43. Lee K, Hwang J, Ahn Y (2014) Fabrication of superhydrophobic surface on a cellulose-based material via chemical modification. Bull Korean Chem Soc 35:1545–1548. CrossRefGoogle Scholar
  44. Li J, Wan H, Ye Y, Zhou H, Chen J (2012) One-step process to fabrication of transparent superhydrophobic SiO2 paper. Appl Surf Sci 261:470–472. CrossRefGoogle Scholar
  45. Liebert TF, Heinze T (2005) Tailored cellulose esters: synthesis and structure determination. Biomacromolecules 6:333–340. CrossRefGoogle Scholar
  46. Liebert T, Hänsch C, Heinze T (2006) Click chemistry with polysaccharides. Macromol Rapid Commun 27:208–213. CrossRefGoogle Scholar
  47. Luo Y, Huang J (2014) Surface modification of natural cellulose substances: toward functional materials and applications. Sci China Chem 57:1672–1682. CrossRefGoogle Scholar
  48. Lutz J-F (2007) 1,3-Dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. Angew Chem Int Ed 46:1018–1025. CrossRefGoogle Scholar
  49. Malmström E, Carlmark A (2012) Controlled grafting of cellulose fibres: an outlook beyond paper and cardboard. Polym Chem 3:1702–1713. CrossRefGoogle Scholar
  50. McCormick CL, Dawsey TR, Newman JK (1990) Competitive formation of cellulose p-toluenesulfonate and chlorodeoxycellulose during homogeneous reaction of p-toluenesulfonyl chloride with cellulose in N,N-dimethylacetamide-lithium chloride. Carbohydr Res 208:183–191. CrossRefGoogle Scholar
  51. Negishi K, Mashiko Y, Yamashita E, Otsuka A, Hasegawa T (2011) Cellulose chemistry meets click chemistry: syntheses and properties of cellulose-based glycoclusters with high structural homogeneity. Polymers 3:489–508. CrossRefGoogle Scholar
  52. Pahimanolis N, Hippi U, Johansson L-S, Saarinen T, Houbenov N, Ruokolainen J, Seppälä J (2011) Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose 18:1201–1212. CrossRefGoogle Scholar
  53. Rahn K, Diamantoglou M, Klemm D, Berghmans H, Heinze T (1996) Homogeneous synthesis of cellulose p-toluenesulfonates in N,N-dimethylacetamide/LiCl solvent system. Die Angew Makro Chem 238:143–163. CrossRefGoogle Scholar
  54. Rattanarat P, Dungchai W, Cate D, Volckens J, Chailapakul O, Henry CS (2014) Multilayer paper-based device for colorimetric and electrochemical quantification of metals. Anal Chem 86:3555–3562. CrossRefGoogle Scholar
  55. Ritter H, Knudsen B, Mondrzik BE, Branscheid R, Kolb U (2012) Cellulose-click-ferrocenes as docking spots for cyclodextrin. Polym Int 61:1245–1248. CrossRefGoogle Scholar
  56. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41:2596–2599.;2-4 CrossRefGoogle Scholar
  57. Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064. CrossRefGoogle Scholar
  58. Rull-Barrull J, d’Halluin M, Le Grognec E, Felpin F-X (2016) Harnessing the dual properties of thiol-grafted cellulose paper for click reactions: a powerful reducing agent and adsorbent for Cu. Angew Chem Int Ed 55:13549–13552. CrossRefGoogle Scholar
  59. Schenzel A, Hufendiek A, Barner-Kowollik C, Meier MAR (2014) Catalytic transesterification of cellulose in ionic liquids: sustainable access to cellulose esters. Green Chem 16:3266–3271. CrossRefGoogle Scholar
  60. Si Y, Guo Z (2016) Bio-inspired writable multifunctional recycled paper with outer and inner uniform superhydrophobicity. RSC Adv 6:30776–30784. CrossRefGoogle Scholar
  61. Thirumurugan P, Matosiuk D, Jozwiak K (2013) Click chemistry for drug development and diverse chemical–biology applications. Chem Rev 113:4905–4979. CrossRefGoogle Scholar
  62. Tischer T et al (2013) Spatially controlled photochemical peptide and polymer conjugation on biosurfaces. Biomacromolecules 14:4340–4350. CrossRefGoogle Scholar
  63. Tischer T et al (2014) Photo-patterning of non-fouling polymers and biomolecules on paper. Adv Mater 26:4087–4092. CrossRefGoogle Scholar
  64. Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X (2016) Cu-catalyzed click reaction in carbohydrate chemistry. Chem Rev 116:3086–3240. CrossRefGoogle Scholar
  65. Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064. CrossRefGoogle Scholar
  66. Wang SM, Ge L, Li L, Yan M, Ge SG, Yu JH (2013) Molecularly imprinted polymer grafted paper-based multi-disk micro-disk plate for chemiluminescence detection of pesticide. Biosens Bioelectron 50:262–268. CrossRefGoogle Scholar
  67. Wang Y, Li X, Hu H, Liu G, Rabnawaz M (2014) Hydrophilically patterned superhydrophobic cotton fabrics and their use in ink printing. J Mater Chem A 2:8094–8102. CrossRefGoogle Scholar
  68. Wang F, Li W, Wang J, Ren J, Qu X (2015) Detection of telomerase on upconversion nanoparticle modified cellulose paper. Chem Commun 51:11630–11633. CrossRefGoogle Scholar
  69. Wang JH, Wong JXH, Kwok H, Li XC, Yu HZ (2016) Facile preparation of nanostructured, superhydrophobic filter paper for efficient water/oil separation. Plos One. Google Scholar
  70. Werner O, Quan C, Turner C, Pettersson B, Wågberg L (2010) Properties of superhydrophobic paper treated with rapid expansion of supercritical CO2 containing a crystallizing wax. Cellulose 17:187–198. CrossRefGoogle Scholar
  71. Xiao W, Luo Y, Zhang X, Huang J (2013) Highly sensitive colourimetric anion chemosensors fabricated by functional surface modification of natural cellulose substance. RSC Adv 3:5318–5323. CrossRefGoogle Scholar
  72. Xu C, Spadiut O, Araújo AC, Nakhai A, Brumer H (2012) Chemo-enzymatic assembly of clickable cellulose surfaces via multivalent polysaccharides. Chemsuschem 5:661–665. CrossRefGoogle Scholar
  73. Yadav P, Chacko S, Kumar G, Ramapanicker R, Verma V (2015) Click chemistry route to covalently link cellulose and clay. Cellulose 22:1615–1624. CrossRefGoogle Scholar
  74. Yang H, Deng Y (2008) Preparation and physical properties of superhydrophobic papers. J Colloid Interface Sci 325:588–593. CrossRefGoogle Scholar
  75. Yu A, Shang J, Cheng F, Paik BA, Kaplan JM, Andrade RB, Ratner DM (2012) Biofunctional paper via the covalent modification of cellulose. Langmuir 28:11265–11273. CrossRefGoogle Scholar
  76. Yu Z-P, Ma C-H, Wang Q, Liu N, Yin J, Wu Z-Q (2016) Polyallene-block-polythiophene-block-polyallene copolymers: one-pot synthesis, helical assembly, and multiresponsiveness. Macromolecules 49:1180–1190. CrossRefGoogle Scholar
  77. Zhang M, Wang C, Wang S, Shi Y, Li J (2012) Fabrication of coral-like superhydrophobic coating on filter paper for water–oil separation. Appl Surf Sci 261:764–769. CrossRefGoogle Scholar
  78. Zorn G, Liu L-H, Árnadóttir L, Wang H, Gamble LJ, Castner DG, Yan M (2014) X-ray photoelectron spectroscopy investigation of the nitrogen species in photoactive perfluorophenylazide-modified surfaces. J Phys Chem C 118:376–383. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université de Nantes, UFR des Sciences et des Techniques, CNRS UMR 6230, CEISAMNantes Cedex 3France
  2. 2.Université Nangui Abrogoua, Laboratoire de Thermodynamique et de Physico-Chimie du MilieuAbidjan 02Côte d’Ivoire
  3. 3.Institut Charles Gerhardt, UMR 5253 CNRS-ENSCM-UM, ENSCMMontpellier CedexFrance
  4. 4.Institut Universitaire de FranceParis Cedex 05France

Personalised recommendations