Cellulose

, Volume 25, Issue 1, pp 151–165 | Cite as

Exploring the composition of raw and delignified Colombian fique fibers, tow and pulp

  • Sergio A. Ovalle-Serrano
  • Cristian Blanco-Tirado
  • Marianny Y. Combariza
Original Paper
  • 80 Downloads

Abstract

As worldwide agricultural production rises, agro-industrial biomass becomes an abundant raw source for uses in energy and materials production. In Colombia fique plants (Furcraea spp.) are traditionally used to extract hard cellulosic fibers using mechanical decortication. Juice, pulp and tow, the by-products of this process, represent almost 95% of the fique leaf weight and are produced in large quantities. Data on these materials is scarce and greatly needed to guide and fuel fique agro-industrial development in Colombia. In this contribution we study the physicochemical properties of fique fibers and by-products (tow and pulp), before and after alkaline hydrogen peroxide treatment (AHP), using spectroscopic and microscopic techniques. Raw/clean fique tow is similar in structure and composition to fique fibers with average cellulose, hemicellulose and lignin contents of 52.3, 23.8 and 23.9%; in this by-product cellulose exists as a highly ordered structure with crystallinity index of 57%. Raw/clean fique pulp, composed of cellulose filaments from secondary cell walls and leaf epidermis, has average cellulose, hemicellulose and lignin contents of 30.5, 29.7 and 9.6%, with cellulose exhibiting an amorphous structure with a crystallinity index of 35%. The AHP treatment of these by-products effectively removed non-cellulosic compounds such as hemicellulose and lignin. After AHP lignin content in fique tow decreases to 2.8% while cellulose crystallinity increases up to 73%, Likewise, fique pulp shows a reduction in lignin to 2.1% and an increase in cellulose crystallinity up to 47%. IR spectroscopic analysis, after AHP, show a decrease of signals attributed to hemicellulose and lignin and FESEM images show a disruption of the lamellar structure in the macro fiber by the removal of hemicellulose, lignin and ground tissue, leaving cellulose fibrils exposed. As the first in-depth report on fique by-products characterization, our results indicate that pulp and tow are interesting lignocellulosic materials due to their significant content of crystalline and amorphous cellulose.

Keywords

Natural fibers Fique Tow Pulp Cellulose Delignification Ultrasound 

Notes

Acknowledgments

We thank Guatiguará Technology Park and the Central Research Laboratory Facility (X-ray and microscopy laboratories) at Universidad Industrial de Santander for infrastructural support. We also acknowledge a graduate fellowship from COLCIENCIAS Program No. 567/2012 and financial support from Universidad Industrial de Santander Vice-chancellor for Research and Outreach Office (Grant 2316/2017).

Supplementary material

10570_2017_1599_MOESM1_ESM.docx (164 kb)
Supplementary material 1 (DOCX 164 kb)

References

  1. Abraham E, Deepa B, Pothan LA et al (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86:1468–1475CrossRefGoogle Scholar
  2. Ahmadi M, Madadlou A, Sabouri AA (2015) Isolation of micro- and nano-crystalline cellulose particles and fabrication of crystalline particles-loaded whey protein cold-set gel. Food Chem 174:97–103.  https://doi.org/10.1016/j.foodchem.2014.11.038 CrossRefGoogle Scholar
  3. Annadurai G, Juang R-S, Lee D-J (2002) Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J Hazard Mater 92:263–274.  https://doi.org/10.1016/S0304-3894(02)00017-1 CrossRefGoogle Scholar
  4. Barreto ACH, Rosa DS, Fechine PBA, Mazzetto SE (2011) Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites. Compos Part A Appl Sci Manuf 42:492–500.  https://doi.org/10.1016/j.compositesa.2011.01.008 CrossRefGoogle Scholar
  5. Belaadi A, Bezazi A, Bourchak M et al (2014) Thermochemical and statistical mechanical properties of natural sisal fibres. Compos Part B Eng 67:481–489.  https://doi.org/10.1016/j.compositesb.2014.07.029 CrossRefGoogle Scholar
  6. Brahim M, El Kantar S, Boussetta N et al (2016) Delignification of rapeseed straw using innovative chemo-physical pretreatments. Biomass Bioenerg 95:92–98.  https://doi.org/10.1016/j.biombioe.2016.09.019 CrossRefGoogle Scholar
  7. Brett CT (2000) Cellulose microfibrils in plants: biosynthesis, deposition, and integration into the cell wall. Int Rev Cytol 199:161–199.  https://doi.org/10.1016/s0074-7696(00)99004-1 CrossRefGoogle Scholar
  8. Browning BL (1967) No Title. Methods in wood chemistry, vol II. Wiley, New York, pp 406–727Google Scholar
  9. Bussemaker MJ, Zhang D (2013) Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Ind Eng Chem Res 52:3563–3580.  https://doi.org/10.1021/ie3022785 CrossRefGoogle Scholar
  10. Bussemaker MJ, Xu F, Zhang D (2013) Manipulation of ultrasonic effects on lignocellulose by varying the frequency, particle size, loading and stirring. Bioresour Technol 148:15–23.  https://doi.org/10.1016/j.biortech.2013.08.106 CrossRefGoogle Scholar
  11. Cao X, Ding B, Yu J, Al-Deyab SS (2012) Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohydr Polym 90:1075–1080.  https://doi.org/10.1016/j.carbpol.2012.06.046 CrossRefGoogle Scholar
  12. Castellanos DOF, Torres PLM, Rojas LJC (2009) Agenda prospectiva de investigación y desarrollo tecnológico para la cadena productiva de fique en Colombia. Ministerio de agricultura y desarrollo rural, BogotáGoogle Scholar
  13. Castellanos LJ, Blanco-Tirado C, Hinestroza JP, Combariza MY (2012) In situ synthesis of gold nanoparticles using fique natural fibers as template. Cellulose 19:1933–1943.  https://doi.org/10.1007/s10570-012-9763-8 CrossRefGoogle Scholar
  14. Chacón-Patiño ML, Blanco-Tirado C, Hinestroza JP, Combariza MY (2013) Biocomposite of nanostructured MnO2 and fique fibers for efficient dye degradation. Green Chem 15:2920.  https://doi.org/10.1039/c3gc40911b CrossRefGoogle Scholar
  15. Chen W, Yu H, Liu Y et al (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442.  https://doi.org/10.1007/s10570-011-9497-z CrossRefGoogle Scholar
  16. Correia JADC, Júnior JEM, Gonçalves LRB, Rocha MVP (2013) Alkaline hydrogen peroxide pretreatment of cashew apple bagasse for ethanol production: study of parameters. Bioresour Technol 139:249–256.  https://doi.org/10.1016/j.biortech.2013.03.153 CrossRefGoogle Scholar
  17. Cybulska J, Zdunek A, Konstankiewicz K (2011) Calcium effect on mechanical properties of model cell walls and apple tissue. J Food Eng 102:217–223.  https://doi.org/10.1016/j.jfoodeng.2010.08.019 CrossRefGoogle Scholar
  18. da Silva Lacerda V, López-Sotelo JB, Correa-Guimarães A et al (2015) Rhodamine B removal with activated carbons obtained from lignocellulosic waste. J Environ Manag 155:67–76.  https://doi.org/10.1016/j.jenvman.2015.03.007 CrossRefGoogle Scholar
  19. Dizbay-Onat M, Vaidya UK, Lungu CT (2017) Preparation of industrial sisal fiber waste derived activated carbon by chemical activation and effects of carbonization parameters on surface characteristics. Ind Crops Prod 95:583–590.  https://doi.org/10.1016/j.indcrop.2016.11.016 CrossRefGoogle Scholar
  20. El Oudiani A, Chaabouni Y, Msahli S, Sakli F (2011) Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre. Carbohydr Polym 86:1221–1229.  https://doi.org/10.1016/j.carbpol.2011.06.037 CrossRefGoogle Scholar
  21. Gañán P, Mondragon I (2002) Surface modification of fique fibers. effect on their physico-mechanical properties. Polym Compos 23:383–394.  https://doi.org/10.1002/pc.10440 CrossRefGoogle Scholar
  22. García A, Gandini A, Labidi J et al (2016) Industrial and crop wastes: a new source for nanocellulose biorefinery. Ind Crops Prod 93:26–38.  https://doi.org/10.1016/j.indcrop.2016.06.004 CrossRefGoogle Scholar
  23. Gopal M, Mathew MD (1986) The scope for utilizing jute wastes as raw materials in various industries: a review. Agric Wastes 15:149–158.  https://doi.org/10.1016/0141-4607(86)90046-6 CrossRefGoogle Scholar
  24. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRefGoogle Scholar
  25. Heidarian P, Behzad T, Karimi K (2016) Isolation and characterization of bagasse cellulose nanofibrils by optimized sulfur-free chemical delignification. Wood Sci Technol 50:1071–1088.  https://doi.org/10.1007/s00226-016-0820-6 CrossRefGoogle Scholar
  26. Heredia-Guerrero JA, Bení-tez JJ, Domí-nguez E et al (2014) Infrared and Raman spectroscopic features of plant cuticles: a review. Front Plant Sci 5:1–14.  https://doi.org/10.3389/fpls.2014.00305 CrossRefGoogle Scholar
  27. Hoyos CG, Alvarez VA, Rojo PG, Vázquez A (2012) Fique fibers: enhancement of the tensile strength of alkali treated fibers during tensile load application. Fibers Polym 13:632–640.  https://doi.org/10.1007/s12221-012-0632-8 CrossRefGoogle Scholar
  28. Hu Y, Tang L, Lu Q et al (2014) Preparation of cellulose nanocrystals and carboxylated cellulose nanocrystals from borer powder of bamboo. Cellulose 21:1611–1618.  https://doi.org/10.1007/s10570-014-0236-0 CrossRefGoogle Scholar
  29. Iskalieva A, Yimmou BM, Gogate PR et al (2012) Cavitation assisted delignification of wheat straw: a review. Ultrason Sonochem 19:984–993.  https://doi.org/10.1016/j.ultsonch.2012.02.007 CrossRefGoogle Scholar
  30. Jiang F, Hsieh Y-L (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40.  https://doi.org/10.1016/j.carbpol.2013.02.022 CrossRefGoogle Scholar
  31. Lamaming J, Hashim R, Leh CP et al (2015) Isolation and characterization of cellulose nanocrystals from parenchyma and vascular bundle of oil palm trunk (Elaeis guineensis). Carbohydr Polym 134:534–540.  https://doi.org/10.1016/j.carbpol.2015.08.017 CrossRefGoogle Scholar
  32. Lataye DH, Mishra IM, Mall ID (2006) Removal of pyridine from aqueous solution by adsorption on bagasse fly ash. Ind Eng Chem Res 45:3934–3943.  https://doi.org/10.1021/ie051315w CrossRefGoogle Scholar
  33. Leavitt SW, Danzer SR (1993) Method for batch processing small wood samples to holocellulose for stable-carbon isotope analysis. Anal Chem 65:87–89.  https://doi.org/10.1021/ac00049a017 CrossRefGoogle Scholar
  34. Li W, Zhang Y, Li J et al (2015) Characterization of cellulose from banana pseudo-stem by heterogeneous liquefaction. Carbohydr Polym 132:513–519.  https://doi.org/10.1016/j.carbpol.2015.06.066 CrossRefGoogle Scholar
  35. Liu C-F, Ren J-L, Xu F et al (2006) Isolation and characterization of cellulose obtained from ultrasonic irradiated sugarcane bagasse. J Agric Food Chem 54:5742–5748.  https://doi.org/10.1021/jf060929o CrossRefGoogle Scholar
  36. Lu H, Gui Y, Zheng L, Liu X (2013) Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue. Food Res Int 50:121–128.  https://doi.org/10.1016/j.foodres.2012.10.013 CrossRefGoogle Scholar
  37. Lu Q, Tang L, Lin F et al (2014) Preparation and characterization of cellulose nanocrystals via ultrasonication-assisted FeCl3-catalyzed hydrolysis. Cellulose 21:3497–3506.  https://doi.org/10.1007/s10570-014-0376-2 CrossRefGoogle Scholar
  38. Luzi F, Fortunati E, Puglia D et al (2014) Optimized extraction of cellulose nanocrystals from pristine and carded hemp fibres. Ind Crops Prod 56:175–186.  https://doi.org/10.1016/j.indcrop.2014.03.006 CrossRefGoogle Scholar
  39. Malucelli LC, Lacerda LG, Dziedzic M, da Silva Carvalho Filho MA (2017) Preparation, properties and future perspectives of nanocrystals from agro-industrial residues: a review of recent research. Rev Environ Sci Bio/Technology 16:131–145.  https://doi.org/10.1007/s11157-017-9423-4 CrossRefGoogle Scholar
  40. Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86:1291–1299CrossRefGoogle Scholar
  41. Maran JP, Priya B (2015) Ultrasound-assisted extraction of pectin from sisal waste. Carbohydr Polym 115:732–738.  https://doi.org/10.1016/j.carbpol.2014.07.058 CrossRefGoogle Scholar
  42. Mazeau K (2015) The hygroscopic power of amorphous cellulose: a modeling study. Carbohydr Polym 117:585–591.  https://doi.org/10.1016/j.carbpol.2014.09.095 CrossRefGoogle Scholar
  43. Miranda MIG, Bica CID, Nachtigall SMB et al (2013) Kinetical thermal degradation study of maize straw and soybean hull celluloses by simultaneous DSC–TGA and MDSC techniques. Thermochim Acta 565:65–71.  https://doi.org/10.1016/j.tca.2013.04.012 CrossRefGoogle Scholar
  44. Montanari S, Roumani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671.  https://doi.org/10.1021/ma048396c CrossRefGoogle Scholar
  45. Morais JPS, Rosa MF, de Souza Filho MM, do Nascimento LD, Nascimento DM, Cassales A (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr Polym 91:229–235.  https://doi.org/10.1016/j.carbpol.2012.08.010 CrossRefGoogle Scholar
  46. Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159.  https://doi.org/10.1007/s10570-007-9145-9 CrossRefGoogle Scholar
  47. Ouchi A (2008) Efficient total halogen-free photochemical bleaching of kraft pulps using alkaline hydrogen peroxide. J Photochem Photobiol A Chem 200:388–395.  https://doi.org/10.1016/j.jphotochem.2008.09.006 CrossRefGoogle Scholar
  48. Ovalle S, Blanco-Tirado C, Combariza M (2013) Sintesis in situ de nanoparticulas de plata sobre fibras de fique. Rev Colomb Química 42:30–37Google Scholar
  49. Ovalle-Serrano SA, Carrillo VS, Blanco-Tirado C et al (2015) Controlled synthesis of ZnO particles on the surface of natural cellulosic fibers: effect of concentration, heating and sonication. Cellulose 22:1841–1852.  https://doi.org/10.1007/s10570-015-0620-4 CrossRefGoogle Scholar
  50. Peinado JE, Ospina LF, Rodríguez L et al (2006) Guía Ambiental del Subsector Fiquero. Cadena Productiva Nacional del Fique, BogotáGoogle Scholar
  51. Perez-Pimienta JA, Lopez-Ortega MG, Chavez-Carvayar JA et al (2015) Characterization of agave bagasse as a function of ionic liquid pretreatment. Biomass Bioenerg 75:180–188.  https://doi.org/10.1016/j.biombioe.2015.02.026 CrossRefGoogle Scholar
  52. Perez-Pimienta JA, Poggi-Varaldo HM, Ponce-Noyola T et al (2016) Fractional pretreatment of raw and calcium oxalate-extracted agave bagasse using ionic liquid and alkaline hydrogen peroxide. Biomass Bioenerg 91:48–55.  https://doi.org/10.1016/j.biombioe.2016.05.001 CrossRefGoogle Scholar
  53. Prozil SO, Evtuguin DV, Lopes LPC (2012) Chemical composition of grape stalks of Vitis vinifera L. from red grape pomaces. Ind Crops Prod 35:178–184.  https://doi.org/10.1016/j.indcrop.2011.06.035 CrossRefGoogle Scholar
  54. Quintero M, Castro L, Ortiz C et al (2012) Enhancement of starting up anaerobic digestion of lignocellulosic substrate: fique’s bagasse as an example. Bioresour Technol 108:8–13.  https://doi.org/10.1016/j.biortech.2011.12.052 CrossRefGoogle Scholar
  55. Ramadoss G, Muthukumar K (2014) Ultrasound assisted ammonia pretreatment of sugarcane bagasse for fermentable sugar production. Biochem Eng J 83:33–41.  https://doi.org/10.1016/j.bej.2013.11.013 CrossRefGoogle Scholar
  56. Rehman N, de Miranda MIG, Rosa SML et al (2014) Cellulose and nanocellulose from maize straw: an insight on the crystal properties. J Polym Environ 22:252–259.  https://doi.org/10.1007/s10924-013-0624-9 Google Scholar
  57. Renard CMGC, Rohou Y, Hubert C et al (1997) Bleaching of apple pomace by hydrogen peroxide in alkaline conditions: optimisation and characterisation of the products. LWT Food Sci Technol 30:398–405.  https://doi.org/10.1006/fstl.1996.0195 CrossRefGoogle Scholar
  58. Santos JDG, Espeleta AF, Branco A, de Assis SA (2013) Aqueous extraction of pectin from sisal waste. Carbohydr Polym 92:1997–2001.  https://doi.org/10.1016/j.carbpol.2012.11.089 CrossRefGoogle Scholar
  59. Satyanarayana KG, Flores-Sahagun THS, Dos Santos LP et al (2013) Characterization of blue agave bagasse fibers of Mexico. Compos. Part A Appl. Sci. Manuf. 45:153–161CrossRefGoogle Scholar
  60. Sèbe G, Ham-Pichavant F, Ibarboure E et al (2012) Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromol 13:570–578.  https://doi.org/10.1021/bm201777j CrossRefGoogle Scholar
  61. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text Res J 29:786–794.  https://doi.org/10.1177/004051755902901003 CrossRefGoogle Scholar
  62. Shinoj S, Visvanathan R, Panigrahi S (2010) Towards industrial utilization of oil palm fibre: physical and dielectric characterization of linear low density polyethylene composites and comparison with other fibre sources. Biosyst Eng 106:378–388.  https://doi.org/10.1016/j.biosystemseng.2010.04.008 CrossRefGoogle Scholar
  63. Silkin PP, Ekimova NV (2012) Relationship of strontium and calcium concentrations with the parameters of cell structure in Siberian spruce and fir tree-rings. Dendrochronologia 30:189–194.  https://doi.org/10.1016/j.dendro.2011.06.003 CrossRefGoogle Scholar
  64. Silva FDA, Chawla N, Filho RDDT (2008) Tensile behavior of high performance natural (sisal) fibers. Compos Sci Technol 68:3438–3443.  https://doi.org/10.1016/j.compscitech.2008.10.001 CrossRefGoogle Scholar
  65. Sonneveld EJ, Visser JW (1975) Automatic collection of powder data from photographs. J Appl Crystallogr 8:1–7.  https://doi.org/10.1107/S0021889875009417 CrossRefGoogle Scholar
  66. Su Y, Du R, Guo H et al (2015) Fractional pretreatment of lignocellulose by alkaline hydrogen peroxide: characterization of its major components. Food Bioprod Process 94:322–330.  https://doi.org/10.1016/j.fbp.2014.04.001 CrossRefGoogle Scholar
  67. Subhedar PB, Gogate PR (2014) Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material. Ultrason Sonochem 21:216–225.  https://doi.org/10.1016/j.ultsonch.2013.08.001 CrossRefGoogle Scholar
  68. Sul’man EM, Sul’man MG, Prutenskaya EA (2011) Effect of ultrasonic pretreatment on the composition of lignocellulosic material in biotechnological processes. Catal Ind 3:28–33CrossRefGoogle Scholar
  69. Sun R, Tomkinson J (2002) Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrason Sonochem 9:85–93.  https://doi.org/10.1016/S1350-4177(01)00106-7 CrossRefGoogle Scholar
  70. Sun RC, Fang JM, Tomkinson J (2000) Delignification of rye straw using hydrogen peroxide. Ind Crops Prod 12:71–83.  https://doi.org/10.1016/S0926-6690(00)00039-X CrossRefGoogle Scholar
  71. Sun JX, Sun R, Sun XF, Su Y (2004) Fractional and physico-chemical characterization of hemicelluloses from ultrasonic irradiated sugarcane bagasse. Carbohydr Res 339:291–300.  https://doi.org/10.1016/j.carres.2003.10.027 CrossRefGoogle Scholar
  72. Wen JL, Sun SL, Yuan TQ et al (2013) Structural elucidation of lignin polymers of eucalyptus chips during organosolv pretreatment and extended delignification. J Agric Food Chem 61:11067–11075.  https://doi.org/10.1021/jf403717q CrossRefGoogle Scholar
  73. Wójciak A, Kasprzyk H, Sikorska E et al (2014) FT-Raman, FT-infrared and NIR spectroscopic characterization of oxygen-delignified kraft pulp treated with hydrogen peroxide under acidic and alkaline conditions. Vib Spectrosc 71:62–69.  https://doi.org/10.1016/j.vibspec.2014.01.007 CrossRefGoogle Scholar
  74. Yang H, Yan R, Chen H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788.  https://doi.org/10.1016/j.fuel.2006.12.013 CrossRefGoogle Scholar
  75. Yu H, You Y, Lei F et al (2015) Comparative study of alkaline hydrogen peroxide and organosolv pretreatments of sugarcane bagasse to improve the overall sugar yield. Bioresour Technol 187:161–166.  https://doi.org/10.1016/j.biortech.2015.03.123 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Sergio A. Ovalle-Serrano
    • 1
  • Cristian Blanco-Tirado
    • 1
  • Marianny Y. Combariza
    • 1
  1. 1.Escuela de QuímicaUniversidad Industrial de SantanderBucaramangaColombia

Personalised recommendations