Advertisement

Cellulose

, Volume 25, Issue 1, pp 367–375 | Cite as

Micro-patterns on nanocellulose films and paper by photo-induced thiol–yne click coupling: a facile method toward wetting with spatial resolution

  • Jiaqi Guo
  • Ilari Filpponen
  • Leena-Sisko Johansson
  • Stefan Heiβler
  • Lei Li
  • Pavel Levkin
  • Orlando J. Rojas
Original Paper

Abstract

We report a facile approach to tailor the wettability of ligno-cellulosic substrates via photo-induced thiol–yne click coupling. First, cellulosic surfaces were functionalized with 4-pentynoic acid to introduce terminal alkyne moieties for the subsequent photo-induced coupling in heterogeneous phase. Next, the (primed) surfaces were reacted with various thiol-containing molecules to systematically tailor the surface energy. Finally, the method was applied to nanocellulose films and paper to develop micro-patterned surfaces via UV lithography, endowing the substrates with thin hydrophilic channels (~ 250 μm thickness) and hydrophobic boundaries between neighboring water droplets, as small as 100 μm in width. Overall, we propose thiol-click as a facile method toward spatially-resolved wetting that enables paper-based electronics in smart labels and point-of-care bioplatforms.

Keywords

Nanocellulose Surface functionalization Photo-induced thiol–yne reaction Micro-patterns 

Notes

Acknowledgments

This research was financially supported by the Academy of Finland through Centers of Excellence Program (2014–2019), ERC Starting Grant (ID: 337077-DropCellArray) and the Helmholtz Association’s Initiative and Networking Fund (Grant no. VH-NG-621). The authors acknowledge Dr. Maria Soledad Peresin (VTT Technical Research Centre of Finland Ltd, Finland) for providing the CNF films. J.G. acknowledges travel support from Aalto University Foundation and Paper Engineers’ Association. This work made use of the Aalto University Nanomicroscopy Center (Aalto-NMC) premises.

Supplementary material

10570_2017_1593_MOESM1_ESM.pdf (984 kb)
Supplementary material 1 (PDF 984 kb)
10570_2017_1593_MOESM2_ESM.mp4 (2.9 mb)
Supplementary material 2 (MP4 2969 kb)

References

  1. Chen G, Kumar J, Gregory A, Stenzel MH (2009) Efficient synthesis of dendrimers via a thiol–yne and esterification process and their potential application in the delivery of platinum anti-cancer drugs. Chem Commun 41:6291–6293CrossRefGoogle Scholar
  2. Falconnet D, Csucs G, Grandin HM, Textor M (2006) Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27:3044–3063CrossRefGoogle Scholar
  3. Feng W, Li L, Ueda E, Li J, Heißler S, Welle A, Trapp O, Levkin PA (2014) Surface patterning via thiol–yne click chemistry: an extremely fast and versatile approach to superhydrophilic–superhydrophobic micropatterns. Adv Mater Interfaces 1:1400269CrossRefGoogle Scholar
  4. Gau H, Herminghaus S, Lenz P, Lipowsky R (1999) Liquid morphologies on structured surfaces: from microchannels to microchips. Science 283:46–49CrossRefGoogle Scholar
  5. Guo J, Fang W, Welle A, Feng W, Filpponen I, Rojas OJ, Levkin PA (2016) Superhydrophobic and slippery lubricant-infused flexible transparent nanocellulose films by photoinduced thiol–ene functionalization. ACS Appl Mater Interfaces 8:34115–34122CrossRefGoogle Scholar
  6. Haginoya C, Ishibashi M, Koike K (1997) Nanostructure array fabrication with a size-controllable natural lithography. Appl Phys Lett 71:2934–2936CrossRefGoogle Scholar
  7. Hayward R, Saville D, Aksay I (2000) Electrophoretic assembly of colloidal crystals with optically tunable micropatterns. Nature 404:56–59CrossRefGoogle Scholar
  8. He Q, Sudibya HG, Yin Z, Wu S, Li H, Boey F, Huang W, Chen P, Zhang H (2010) Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. ACS Nano 4:3201–3208CrossRefGoogle Scholar
  9. Hoogenboom R (2010) Thiol–yne chemistry: a powerful tool for creating highly functional materials. Angew Chem Int Ed 49:3415–3417CrossRefGoogle Scholar
  10. Huang J, Zhu H, Chen Y, Preston C, Rohrbach K, Cumings J, Hu L (2013) Highly transparent and flexible nanopaper transistors. ACS Nano 7:2106–2113CrossRefGoogle Scholar
  11. Huang J, Li C, Gray DG (2014) Functionalization of cellulose nanocrystal films via “thiol–ene” click reaction. RSC Adv 4:6965–6969CrossRefGoogle Scholar
  12. Juvonen H, Määttänen A, Laurén P, Ihalainen P, Urtti A, Yliperttula M, Peltonen J (2013) Biocompatibility of printed paper-based arrays for 2-D cell cultures. Acta Biomater 9:6704–6710CrossRefGoogle Scholar
  13. Kargl R, Mohan T, Köstler S, Spirk S, Doliška A, Stana-Kleinschek K, Ribitsch V (2013) Functional patterning of biopolymer thin films using enzymes and lithographic methods. Adv Func Mater 23:308–315CrossRefGoogle Scholar
  14. Kim J, Yun S, Ounaies Z (2006) Discovery of cellulose as a smart material. Macromolecules 39:4202–4206CrossRefGoogle Scholar
  15. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRefGoogle Scholar
  16. Lessing J, Glavan AC, Walker SB, Keplinger C, Lewis JA, Whitesides GM (2014) Inkjet printing of conductive inks with high lateral resolution on omniphobic “RF Paper” for paper-based electronics and MEMS. Adv Mater 26:4677–4682CrossRefGoogle Scholar
  17. Li Y, Pan M, Li Y, Huang Y, Guo Q (2013) Thiol–yne radical reaction mediated site-specific protein labeling via genetic incorporation of an alkynyl-l-lysine analogue. Org Biomol Chem 11:2624–2629CrossRefGoogle Scholar
  18. Li L, Li J, Du X, Welle A, Grunze M, Trapp O, Levkin PA (2014) Direct UV-induced functionalization of surface hydroxy groups by thiol–ol chemistry. Angew Chem Int Ed 53:3835–3839CrossRefGoogle Scholar
  19. Lin SY, Chow E, Hietala VV, Villeneuve PR, Joannopoulos JD (1998) Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal. Science 282:274–276CrossRefGoogle Scholar
  20. Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598CrossRefGoogle Scholar
  21. Painter O, Lee RK, Scherer A, Yariv A, O’Brien JD, Dapkus PD, Kim II (1999) Two-dimensional photonic band-Gap defect mode laser. Science 284:1819–1821CrossRefGoogle Scholar
  22. Popova AA, Schillo SM, Demir K, Ueda E, Nesterov-Mueller A, Levkin PA (2015) Droplet-array (DA) sandwich chip: a versatile platform for high-throughput cell screening based on superhydrophobic-superhydrophilic micropatterning. Adv Mater 27:5217–5222CrossRefGoogle Scholar
  23. Popova AA, Demir K, Hartanto TG, Schmitt E, Levkin PA (2016) Droplet-microarray on superhydrophobic–superhydrophilic patterns for high-throughput live cell screenings. RSC Adv 6:38263–38276CrossRefGoogle Scholar
  24. Siegel AC, Phillips ST, Dickey MD, Lu N, Suo Z, Whitesides GM (2010) Foldable printed circuit boards on paper substrates. Adv Func Mater 20:28–35CrossRefGoogle Scholar
  25. Song J, Rojas OJ (2013) Approaching super-hydrophobicity from cellulosic materials: a review. Nord Pulp Paper Res J 28:216–238CrossRefGoogle Scholar
  26. Songok J, Tuominen M, Teisala H, Haapanen J, Mäkelä J, Kuusipalo J, Toivakka M (2014) Paper-based microfluidics: fabrication technique and dynamics of capillary-driven surface flow. ACS Appl Mater Interfaces 6:20060–20066CrossRefGoogle Scholar
  27. Teisala H, Tuominen M, Kuusipalo J (2014) Superhydrophobic coatings on cellulose-based materials: fabrication, properties, and applications. Adv Mater Interfaces 1:1–20Google Scholar
  28. Tingaut P, Hauert R, Zimmermann T (2011) Highly efficient and straightforward functionalization of cellulose films with thiol–ene click chemistry. J Mater Chem 21:16066–16076CrossRefGoogle Scholar
  29. Zeng M, Laromaine A, Feng W, Levkin PA, Roig A (2014) Origami magnetic cellulose: controlled magnetic fraction and patterning of flexible bacterial cellulose. J Mater Chem C 2:6312–6318CrossRefGoogle Scholar
  30. Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu J, Henriksson G, Himmel ME, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116:9305–9374CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Bioproducts and Biosystems, School of Chemical EngineeringAalto UniversityAaltoFinland
  2. 2.Alabama Center for Paper and Bioresource Engineering, Department of Chemical EngineeringAuburn UniversityAuburnUSA
  3. 3.Institute of Functional InterfacesKarlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.Institute of Toxicology and GeneticsKarlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany
  5. 5.Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations