Skip to main content
Log in

Effect of fibril length, aspect ratio and surface charge on ultralow shear-induced structuring in micro and nanofibrillated cellulose aqueous suspensions

Cellulose Aims and scope Submit manuscript

Abstract

Micro and nanofibrillated celluloses are essentially one-dimensional high aspect ratio particulate materials, which can undergo two-dimensional layer (band) structuring under controlled ultralow rates of shear, typically ~ 0.01 s−1. Depending on the fibril aspect ratio this structure formation acts to develop internal strain within the gel matrix, inducing solid–liquid phase separation. By controlling the evolving rheological properties in this way, it is possible to induce significant dewatering of the otherwise strongly water holding gel, while preserving gel structure. Microscopic observation of the corresponding freeze-dried aerogels, in which the structure of the wet state has been preserved due to water removal by sublimation, suggests the formation of a close packed liquid crystal-like structuration in the case where the fibril length is sufficient to drive entanglement under axial orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • Agoda-Tandjawa G, Durand S, Berot S, et al (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80:677–686. https://doi.org/10.1016/j.carbpol.2009.11.045

    Article  CAS  Google Scholar 

  • Buscall R (2010) Letter to the Editor: wall slip in dispersion rheometry. J Rheol 54:1177

    Article  CAS  Google Scholar 

  • Dalpke B, Kerekes RJ (2005) The influence of fibre properties on the apparent yield stress of flocculated pulp suspensions. J Pulp Pap Sci 31:39–43

    CAS  Google Scholar 

  • Dentel SK, Abu-Orf MM, Walker CA (2000) Optimization of slurry flocculation and dewatering based on electrokinetic and rheological phenomena. Chem Eng J 80(1):65–72

    Article  CAS  Google Scholar 

  • Dimic-Misic K, Puisto A, Gane PAC, Nieminen K, Alava M, Paltakari J, Maloney TC (2013a) The role of MFC/NFC swelling in the rheological behavior and dewatering of high consistency furnishes. Cellulose 20:2847–2861

    Article  CAS  Google Scholar 

  • Dimic-Misic K, Puisto A, Paltakari J, Alava M, Maloney TC (2013b) The influence of shear on the dewatering of high consistency nanofibrillated cellulose furnishes. Cellulose 20:1853–1864

    Article  CAS  Google Scholar 

  • Dimic-Misic K, Nieminen K, Gane PAC, Maloney TC, Sixta H, Paltakari J (2014a) Deriving a process viscosity for complex particulate nanofibrillar cellulose gel-containing suspensions. Appl Rheol 24:35619–35628

    Google Scholar 

  • Dimic-Misic K, Salo T, Paltakari J, Gane PAC (2014b) Comparing the rheological properties of novel nanofibrillar cellulose-formulated pigment coating colours with those using traditional thickener. Nord Pulp Pap Res J 29:253–270

    Article  CAS  Google Scholar 

  • Dimic-Misic K, Maloney TC, Gane PAC (2015) Defining a strain-induced time constant for oriented low shear-induced structuring in high consistency MFC/NFC-filler composite suspensions. J Appl Polym Sci. https://doi.org/10.1002/app.42827

    Article  Google Scholar 

  • Dimic-Misic K, Rantanen J, Maloney TC, Gane PAC (2016) Gel structure phase behavior in micro nanofibrillated cellulose containing in situ precipitated calcium carbonate. J Appl Polym Sci. https://doi.org/10.1002/app.43486

    Article  Google Scholar 

  • Fall AB, Lindström SB, Sundman O, Ödberg L, Wågberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27:11332–11338

    Article  CAS  Google Scholar 

  • Gane PAC, Leadbetter AJ, Tucker PA, Gray GW, Tajbakhsh AR (1982) The phase behaviour of two thiol esters (12S5 and 14S5). J. Chem Phys 77(12):6215–6217 (Am Inst. Phys.)

    Article  CAS  Google Scholar 

  • Gray GW (1962) Molecular structure and properties of liquid crystals. Academic Press, New York

    Google Scholar 

  • Håkansson KM, Fall AB, Lundell F, Yu S, Krywka C, Roth SV, Santoro G, Kvick M, Prahl Wittberg L, Wågberg L, Söderberg LD (2014) Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat Commun 5:4018. https://doi.org/10.1038/ncomms5018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649

    Article  CAS  Google Scholar 

  • Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polymer J 43:3434–3441

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. In: Journal of applied polymer science. Applied polymer symposium, USA, vol 37, No. CONF-8205234-Vol. 2

  • Horvath AE, Lindström T (2007) The influence of colloidal interactions on fiber network strength. J Colloid Interface Sci 309:511–517

    Article  CAS  Google Scholar 

  • Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59:449–459

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    Article  CAS  Google Scholar 

  • Karppinen A, Saarinen T, Salmela J, Laukkanen A, Nuopponen M, Seppälä J (2012) Flocculation of microfibrillated cellulose in shear flow. Cellulose 19:1807–1819

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15:425–433

    Article  CAS  Google Scholar 

  • Lindström T (2017) Aspects on nanofibrillated cellulose (NFC) processing, rheology and NFC-film properties, Review article. Current Opinion in Colloid & Interface Science, vol 29, pp 68–75

  • Martoïa F, Perge C, Dumont PJJ, Orgéas L, Fardin MA, Manneville S, Belgacem MN (2015) Heterogeneous flow kinematics of cellulose nanofibril suspensions under shear. Soft Matter 11:4742–4755

    Article  Google Scholar 

  • Mohtaschemi M, Dimic-Misic K, Puisto A, Korhonen M, Maloney T, Paltakari J, Alava MJ (2014) Rheological characterization of fibrillated cellulose suspensions via bucket vane viscometer. Cellulose 21:1305–1312

    Article  CAS  Google Scholar 

  • Naderi A, Lindström T (2016) A comparative study of the rheological properties of three different nanofibrillated cellulose systems. Nord Pulp Pap Res J 31(3):354–363

    Article  CAS  Google Scholar 

  • Naderi A, Lindström T, Sundström J (2014) Carboxymethylated nanofibrillated cellulose: rheological studies. Cellulose 21:1561–1571

    Article  CAS  Google Scholar 

  • Naderi A, Lindström T, Sundström J, Pettersson T, Flodberg G, Erlandsson J (2015) Microfluidized carboxymethyl cellulose modified pulp: a nanofibrillated cellulose system with some attractive properties. Cellulose 22(2):1159–1173. https://doi.org/10.1007/s10570-015-0577-3

    Article  CAS  Google Scholar 

  • Naderi A, Lindström T, Erlandsson J, Sundström J, Flodberg G (2016) A comparative study of the properties of three nanofibrillated cellulose systems that have been produced at about the same energy consumption levels in the mechanical delamination step. Nord Pulp Pap Res J 31(3):364–371

    Article  CAS  Google Scholar 

  • Nazari B, Bousfield DW (2016) Cellulose nanofibers influence on properties and processing of paperboard coating. Nord Pulp Pap Res J 31(3):511–520

    Article  CAS  Google Scholar 

  • Nazari B, Kumar V, Bousfield DW, Toivakka M (2016) Rheology of cellulose nanofibers suspensions: boundary driven flow. J Rheol 60:1151–1159

    Article  CAS  Google Scholar 

  • Ono H, Shimaya Y, Sato K, Hongo T (2004) 1H Spin-Spin Relaxation Time of Water and Rheological Properties of Cellulose Nanofiber Dispersion, Transparent Cellulose Hydrogel (TCG). Polym J 36:684–694. https://doi.org/10.1295/polymj.36.684

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941. https://doi.org/10.1021/bm061215p

    Article  CAS  PubMed  Google Scholar 

  • Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4(12):2492–2499

    Article  Google Scholar 

  • Puisto A, Illa X, Mohtaschemi M, Alava M (2012) Modeling the rheology of nanocellulose suspensions. Nord Pulp Pap Res J 27:277

    Article  CAS  Google Scholar 

  • Rantanen JJ, Dimic-Misic K, Pirttiniemi J, Kuosmanen P, Maloney TC (2015) Forming and dewatering of a microfibrillated cellulose composite paper. BioResources 10:3492–3506

    Article  CAS  Google Scholar 

  • Ruiz-Palomero C, Soriano ML, Valcárcel M (2016) Gels based on nanocellulose with photosensitive ruthenium bipyridine moieties as sensors for silver nanoparticles in real samples. Sens Actuators B Chem 229:31–37

    Article  CAS  Google Scholar 

  • Saito T, Okita Y, Nge TT, Sugiyama J, Isogai A (2006) TEMPO-mediated oxidation of native cellulose: microscopic analysis of fibrous fractions in the oxidized products. Carbohyd Polym 65:435–440

    Article  CAS  Google Scholar 

  • Tanaka R, Saito T, Ishii D, Isogai A (2014) Determination of nanocellulose fibril length by shear viscosity measurement. Cellulose 21:1581–1589

    Article  CAS  Google Scholar 

  • Tanaka R, Saito T, Hondo H, Isogai A (2015) Influence of flexibility and dimensions of nanocelluloses on the flow properties of their aqueous dispersions. Biomacromolecules 16(7):2127–2131. https://doi.org/10.1021/acs.biomac.5b00539

    Article  CAS  PubMed  Google Scholar 

  • Usov I, Nyström G, Adamcik J, Handschin S, Schütz C, Fall A, Berström L, Mezzenga R (2015) Understanding nanocellulose chirality and structure-properties relationship at the single fibril level. Nat Commun. https://doi.org/10.1038/ncomms8564

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarina Dimic-Misic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimic-Misic, K., Maloney, T. & Gane, P. Effect of fibril length, aspect ratio and surface charge on ultralow shear-induced structuring in micro and nanofibrillated cellulose aqueous suspensions. Cellulose 25, 117–136 (2018). https://doi.org/10.1007/s10570-017-1584-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1584-3

Keywords

Navigation