Cellulose

, Volume 25, Issue 1, pp 117–136 | Cite as

Effect of fibril length, aspect ratio and surface charge on ultralow shear-induced structuring in micro and nanofibrillated cellulose aqueous suspensions

Original Paper
  • 196 Downloads

Abstract

Micro and nanofibrillated celluloses are essentially one-dimensional high aspect ratio particulate materials, which can undergo two-dimensional layer (band) structuring under controlled ultralow rates of shear, typically ~ 0.01 s−1. Depending on the fibril aspect ratio this structure formation acts to develop internal strain within the gel matrix, inducing solid–liquid phase separation. By controlling the evolving rheological properties in this way, it is possible to induce significant dewatering of the otherwise strongly water holding gel, while preserving gel structure. Microscopic observation of the corresponding freeze-dried aerogels, in which the structure of the wet state has been preserved due to water removal by sublimation, suggests the formation of a close packed liquid crystal-like structuration in the case where the fibril length is sufficient to drive entanglement under axial orientation.

Keywords

Nanocellulose Microfibrillated cellulose Dewatering of nanocelulose gels Rheology Rheopectic structuring 

References

  1. Agoda-Tandjawa G, Durand S, Berot S, et al (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80:677–686.  https://doi.org/10.1016/j.carbpol.2009.11.045 CrossRefGoogle Scholar
  2. Buscall R (2010) Letter to the Editor: wall slip in dispersion rheometry. J Rheol 54:1177CrossRefGoogle Scholar
  3. Dalpke B, Kerekes RJ (2005) The influence of fibre properties on the apparent yield stress of flocculated pulp suspensions. J Pulp Pap Sci 31:39–43Google Scholar
  4. Dentel SK, Abu-Orf MM, Walker CA (2000) Optimization of slurry flocculation and dewatering based on electrokinetic and rheological phenomena. Chem Eng J 80(1):65–72CrossRefGoogle Scholar
  5. Dimic-Misic K, Puisto A, Gane PAC, Nieminen K, Alava M, Paltakari J, Maloney TC (2013a) The role of MFC/NFC swelling in the rheological behavior and dewatering of high consistency furnishes. Cellulose 20:2847–2861CrossRefGoogle Scholar
  6. Dimic-Misic K, Puisto A, Paltakari J, Alava M, Maloney TC (2013b) The influence of shear on the dewatering of high consistency nanofibrillated cellulose furnishes. Cellulose 20:1853–1864CrossRefGoogle Scholar
  7. Dimic-Misic K, Nieminen K, Gane PAC, Maloney TC, Sixta H, Paltakari J (2014a) Deriving a process viscosity for complex particulate nanofibrillar cellulose gel-containing suspensions. Appl Rheol 24:35619–35628Google Scholar
  8. Dimic-Misic K, Salo T, Paltakari J, Gane PAC (2014b) Comparing the rheological properties of novel nanofibrillar cellulose-formulated pigment coating colours with those using traditional thickener. Nord Pulp Pap Res J 29:253–270CrossRefGoogle Scholar
  9. Dimic-Misic K, Maloney TC, Gane PAC (2015) Defining a strain-induced time constant for oriented low shear-induced structuring in high consistency MFC/NFC-filler composite suspensions. J Appl Polym Sci.  https://doi.org/10.1002/app.42827 Google Scholar
  10. Dimic-Misic K, Rantanen J, Maloney TC, Gane PAC (2016) Gel structure phase behavior in micro nanofibrillated cellulose containing in situ precipitated calcium carbonate. J Appl Polym Sci.  https://doi.org/10.1002/app.43486 Google Scholar
  11. Fall AB, Lindström SB, Sundman O, Ödberg L, Wågberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27:11332–11338CrossRefGoogle Scholar
  12. Gane PAC, Leadbetter AJ, Tucker PA, Gray GW, Tajbakhsh AR (1982) The phase behaviour of two thiol esters (12S5 and 14S5). J. Chem Phys 77(12):6215–6217 (Am Inst. Phys.) CrossRefGoogle Scholar
  13. Gray GW (1962) Molecular structure and properties of liquid crystals. Academic Press, New YorkGoogle Scholar
  14. Håkansson KM, Fall AB, Lundell F, Yu S, Krywka C, Roth SV, Santoro G, Kvick M, Prahl Wittberg L, Wågberg L, Söderberg LD (2014) Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat Commun 5:4018.  https://doi.org/10.1038/ncomms5018 CrossRefGoogle Scholar
  15. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649CrossRefGoogle Scholar
  16. Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polymer J 43:3434–3441CrossRefGoogle Scholar
  17. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. In: Journal of applied polymer science. Applied polymer symposium, USA, vol 37, No. CONF-8205234-Vol. 2Google Scholar
  18. Horvath AE, Lindström T (2007) The influence of colloidal interactions on fiber network strength. J Colloid Interface Sci 309:511–517CrossRefGoogle Scholar
  19. Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59:449–459CrossRefGoogle Scholar
  20. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRefGoogle Scholar
  21. Karppinen A, Saarinen T, Salmela J, Laukkanen A, Nuopponen M, Seppälä J (2012) Flocculation of microfibrillated cellulose in shear flow. Cellulose 19:1807–1819CrossRefGoogle Scholar
  22. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRefGoogle Scholar
  23. Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15:425–433CrossRefGoogle Scholar
  24. Lindström T (2017) Aspects on nanofibrillated cellulose (NFC) processing, rheology and NFC-film properties, Review article. Current Opinion in Colloid & Interface Science, vol 29, pp 68–75Google Scholar
  25. Martoïa F, Perge C, Dumont PJJ, Orgéas L, Fardin MA, Manneville S, Belgacem MN (2015) Heterogeneous flow kinematics of cellulose nanofibril suspensions under shear. Soft Matter 11:4742–4755CrossRefGoogle Scholar
  26. Mohtaschemi M, Dimic-Misic K, Puisto A, Korhonen M, Maloney T, Paltakari J, Alava MJ (2014) Rheological characterization of fibrillated cellulose suspensions via bucket vane viscometer. Cellulose 21:1305–1312CrossRefGoogle Scholar
  27. Naderi A, Lindström T (2016) A comparative study of the rheological properties of three different nanofibrillated cellulose systems. Nord Pulp Pap Res J 31(3):354–363CrossRefGoogle Scholar
  28. Naderi A, Lindström T, Sundström J (2014) Carboxymethylated nanofibrillated cellulose: rheological studies. Cellulose 21:1561–1571CrossRefGoogle Scholar
  29. Naderi A, Lindström T, Sundström J, Pettersson T, Flodberg G, Erlandsson J (2015) Microfluidized carboxymethyl cellulose modified pulp: a nanofibrillated cellulose system with some attractive properties. Cellulose 22(2):1159–1173.  https://doi.org/10.1007/s10570-015-0577-3 CrossRefGoogle Scholar
  30. Naderi A, Lindström T, Erlandsson J, Sundström J, Flodberg G (2016) A comparative study of the properties of three nanofibrillated cellulose systems that have been produced at about the same energy consumption levels in the mechanical delamination step. Nord Pulp Pap Res J 31(3):364–371CrossRefGoogle Scholar
  31. Nazari B, Bousfield DW (2016) Cellulose nanofibers influence on properties and processing of paperboard coating. Nord Pulp Pap Res J 31(3):511–520CrossRefGoogle Scholar
  32. Nazari B, Kumar V, Bousfield DW, Toivakka M (2016) Rheology of cellulose nanofibers suspensions: boundary driven flow. J Rheol 60:1151–1159CrossRefGoogle Scholar
  33. Ono H, Shimaya Y, Sato K, Hongo T (2004) 1H Spin-Spin Relaxation Time of Water and Rheological Properties of Cellulose Nanofiber Dispersion, Transparent Cellulose Hydrogel (TCG). Polym J 36:684–694.  https://doi.org/10.1295/polymj.36.684 CrossRefGoogle Scholar
  34. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941.  https://doi.org/10.1021/bm061215p CrossRefGoogle Scholar
  35. Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4(12):2492–2499CrossRefGoogle Scholar
  36. Puisto A, Illa X, Mohtaschemi M, Alava M (2012) Modeling the rheology of nanocellulose suspensions. Nord Pulp Pap Res J 27:277CrossRefGoogle Scholar
  37. Rantanen JJ, Dimic-Misic K, Pirttiniemi J, Kuosmanen P, Maloney TC (2015) Forming and dewatering of a microfibrillated cellulose composite paper. BioResources 10:3492–3506CrossRefGoogle Scholar
  38. Ruiz-Palomero C, Soriano ML, Valcárcel M (2016) Gels based on nanocellulose with photosensitive ruthenium bipyridine moieties as sensors for silver nanoparticles in real samples. Sens Actuators B Chem 229:31–37CrossRefGoogle Scholar
  39. Saito T, Okita Y, Nge TT, Sugiyama J, Isogai A (2006) TEMPO-mediated oxidation of native cellulose: microscopic analysis of fibrous fractions in the oxidized products. Carbohyd Polym 65:435–440CrossRefGoogle Scholar
  40. Tanaka R, Saito T, Ishii D, Isogai A (2014) Determination of nanocellulose fibril length by shear viscosity measurement. Cellulose 21:1581–1589CrossRefGoogle Scholar
  41. Tanaka R, Saito T, Hondo H, Isogai A (2015) Influence of flexibility and dimensions of nanocelluloses on the flow properties of their aqueous dispersions. Biomacromolecules 16(7):2127–2131.  https://doi.org/10.1021/acs.biomac.5b00539 CrossRefGoogle Scholar
  42. Usov I, Nyström G, Adamcik J, Handschin S, Schütz C, Fall A, Berström L, Mezzenga R (2015) Understanding nanocellulose chirality and structure-properties relationship at the single fibril level. Nat Commun.  https://doi.org/10.1038/ncomms8564 Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Katarina Dimic-Misic
    • 1
  • Thad Maloney
    • 1
  • Patrick Gane
    • 1
    • 2
  1. 1.School of Chemical Engineering, Department of Bioproducts and BiosystemsAalto UniversityEspooFinland
  2. 2.Omya International AGOftringenSwitzerland

Personalised recommendations