Skip to main content
Log in

Influence of hemicelluloses and lignin content on structure and sorption properties of flax fibers (Linum usitatissimum L.)

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this work, alkali and oxidative treatments were employed to obtain flax fibers with different content of hemicelluloses and lignin, in order to study the influence of chemical composition on structure and sorption properties of flax fibers. The flax fibers were characterized using FTIR spectroscopy and FESEM microscopy, and by determination of chemical composition, carboxyl group content, electrokinetic and sorption properties. Adsorption of silver ions was used to evaluate flax fiber sorption properties, but also to obtain antimicrobial fibers whose antimicrobial activity was tested against Gram-negative bacteria Escherichia coli, Gram-positive bacteria Staphylococcus aureus and fungi Candida albicans. The progressive removal of hemicelluloses or lignin influenced the sorption properties through the increased liberation of elementary fibers and accessibility of functional surface groups of flax fibers. Removal of hemicelluloses led to increase of iodine sorption without significant change in functional groups content and electrokinetic properties. On the other hand, lignin removal led to an increase of functional groups content, namely carboxyl groups, which in turn influenced better moisture and silver ions sorption. Flax fibers with incorporated silver exhibit fair antimicrobial activity against Gram (−) E. coli, Gram (+) S. aureus and fungi C. albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • ASTDM D 2402-78 (1978) Standard test method for water retention of fibers (centrifuge method). In: Annual Book of ASTM Standards. American Society for Testing and Materials, Philadelphia, PA

  • ASTM D 1776-74 (1978) Conditioning textiles and textile products for testing. In: Annual Book of ASTM Standards. American Society for Testing and Materials, Philadelphia, PA

  • ASTM D 2654-76 (1978) Moisture content and moisture regain of textiles. In: Annual Book of ASTM Standards. American Society for Testing and Materials, Philadelphia, PA

  • Baltazar-y-Jimenez A, Bismarck A (2007) Wetting behaviour, moisture up-take and electrokinetic properties of lignocellulosic fibres. Cellulose 14:115–127

    Article  CAS  Google Scholar 

  • Bellmann C, Caspari A, Albrecht V, Loan Doan TT, Mäder E, Luxbacher T, Kohl R (2005) Electrokinetic properties of natural fibres. Colloid Surf A 267:19–23

    Article  CAS  Google Scholar 

  • Bledzki AK, Mamun AA, Lucka-Gabor M, Gutowski VS (2008) The effects of acetylation on properties of flax fibre and its polypropylene composites. eXPRESS Polym Lett 2:413–422

    Article  CAS  Google Scholar 

  • Fakin D, Golob V, Kleinschek SK, Majcen Le Marechal A (2006) Sorption properties of flax fibers depending on pretreatment processes and their environmental impact. Text Res J 76:448–454

    Article  CAS  Google Scholar 

  • Garner W (1967) Textile laboratory manual, volume 5: fibres. Heywood Books, London, pp 52–113

    Google Scholar 

  • Goudenhooft C, Bourmaud A, Baley C (2017) Varietal selection of flax over time: evolution of plant architecture related to influence on the mechanical properties of fibers. Ind Crops Prod 97:56–64

    Article  Google Scholar 

  • He J, Kunitake T, Nakao A (2003) Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem Mater 15:4401–4406

    Article  CAS  Google Scholar 

  • Hubbe MA (2006) Sensing the electrokinetic potential of cellulosic fiber surfaces. BioResources 1:116–149

    Google Scholar 

  • Ifuku S, Tsuji M, Morimoto M, Saimoto H, Yano H (2009) Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers. Biomacromol 10:2714–2717

    Article  CAS  Google Scholar 

  • Koblyakov A (1989) Laboratory practice in the study of textile materials. Mir Publishers, Moscow, pp 192–200

    Google Scholar 

  • Kostic MM, Pejic BM, Asanovic KA, Aleksic VM, Skundric PD (2010) Effect of hemicelluloses and lignin on the sorption and electric properties of hemp fibers. Ind Crops Prod 32:169–174

    Article  CAS  Google Scholar 

  • Kostic M, Vukcevic M, Pejic B, Kalijadis A (2014) Textiles: history, properties and performance and applications. In: Mondal IM (ed) Hemp fibers: old fibers—new applications. Nova Science Publishers, New York, pp 399–446

    Google Scholar 

  • Lazic BD, Janjic SD, Rijavec T, Kostic MM (2017) Effect of chemical treatments on the chemical composition and properties of flax fibers. J Serb Chem Soc 82:83–97

    Article  CAS  Google Scholar 

  • Luxbacher T (2014) The ZETA guide: principles of the streaming potential technique. Anton Paar, Graz Austria

    Google Scholar 

  • Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51

    Article  CAS  Google Scholar 

  • Meier M, Suppiger A, Eberl L, Seeger S (2017) Functional silver-silicone-nanofilament-composite material for water disinfection. Small 13:1601072

    Article  Google Scholar 

  • Mohapatra HS, Malik RK (2015) Effect of microorganism on flax and linen. J Text Sci Eng 6:229. https://doi.org/10.4172/2165-8064.1000229

    Article  CAS  Google Scholar 

  • Montazer M, Alimohammadi F, Shamei A, Karim Rahimi M (2012) Durable antibacterial and cross-linking cotton with colloidal silver nanoparticles and butane tetracarboxylic acid without yellowing. Colloid Surf B 89:196–202

    Article  CAS  Google Scholar 

  • Mukherjee A, Ganguly PK, Sur D (1993) Structural mechanics of jute: the effects of hemicellulose or lignin removal. J Text Inst 84:348–353

    Article  CAS  Google Scholar 

  • Nada A-AMA, Hassan ML (2006) Ion exchange properties of carboxylated bagasse. J Appl Polym Sci 102:1399–1404

    Article  CAS  Google Scholar 

  • Nelson ML, Rousselle M-A, Cangemi SJ, Trouard P (1970) The iodine sorption test. factors affecting reproducibility and a semimicro adaptation. Text Res J 40:865–872

    Article  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428

    Article  CAS  Google Scholar 

  • TAPPI T-430, om-94 (1998) Copper number: pulp, paper and paper board

  • Pejic BM, Kostic MM, Skundric PD, Praskalo JZ (2008) The effects of hemicelluloses and lignin removal on water uptake behavior of hemp fibers. Bioresour Technol 99:7152–7159

    Article  CAS  Google Scholar 

  • Pejić B, Vukcevic M, Kostic M, Skundric P (2009) Biosorption of heavy metal ions from aqueous solutions by short hemp fibers: effect of chemical composition. J Hazard Mater 164:146–153

    Article  Google Scholar 

  • Praskalo J, Kostic M, Potthast A, Popov G, Pejic B, Skundric P (2009) Sorption properties of TEMPO-oxidized natural and man-made cellulose fibers. Carbohydr Polym 77:791–798

    Article  CAS  Google Scholar 

  • Praskalo-Milanovic JZ, Kostic MM, Dimitrijevic-Brankovic SI, Skundric PD (2010) Silver-loaded lyocell fibers modified by tempo-mediated oxidation. J Appl Polym Sci 117:1772–1779

    CAS  Google Scholar 

  • Praveena SM, Han LS, Than LTL, Aris AY (2016) Preparation and characterization of silver nanoparticle coated on cellulose paper: evaluation of their potential as antibacterial water filter. J Exp Nanosci 11:1307–1319

    Article  CAS  Google Scholar 

  • Röhrling J, Potthast A, Rosenau T, Lange T, Borgards A, Sixta H, Kosma P (2002) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 2. Valid Appl Biomacromol 3:969–975

    Article  Google Scholar 

  • Saito T, Isogai A (2005) Ion-exchange behavior of carboxylate groups in fibrous cellulose oxidized by the TEMPO-mediated system. Carbohydr Polym 61:183–190

    Article  CAS  Google Scholar 

  • Sawpan MA, Pickering KL, Fernyhough A (2011) Effect of various chemical treatments on the fibre structure and tensile properties of industrial hemp fibres. Compos A Appl Sci 42:888–895

    Article  Google Scholar 

  • Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40

    Article  CAS  Google Scholar 

  • Siroka B, Noisternig M, Griesser UJ, Bechtold T (2008) Characterization of cellulosic fibers and fabrics by sorption/desorption. Carbohydr Res 343:2194–2199

    Article  CAS  Google Scholar 

  • Široky J, Blackburn RS, Bechtold T, Taylor J, White P (2010) Attenuated total reflectance Fourier-transform Infrared spectroscopy analysis of crystallinity changes in lyocell following continuous treatment with sodium hydroxide. Cellulose 17:103–115

    Article  Google Scholar 

  • Stana-Kleinschek K, Ribitch V (1998) Electrokinetic properties of processed cellulose fibers. Colloid Surf A 140:127–138

    Article  CAS  Google Scholar 

  • Stana-Kleinschek K, Strnad S, Ribitch V (1999) Surface characterization and adsorption abilities of cellulose fibers. Polym Eng Sci 39:1412–1424

    Article  CAS  Google Scholar 

  • Stankovic Elesini U, Pavko Cuden A, Richards AF (2002) Study of the green cotton fibres. Acta Chim Slov 49:815–833

    Google Scholar 

  • Vukcevic M, Pejic B, Lausevic M, Pajic-Lijakovic I, Kostic M (2014) Influence of chemically modified short hemp fiber structure on biosorption process of Zn2+ ions from waste water. Fiber Polym 15:687–697

    Article  CAS  Google Scholar 

  • Yan L, Chouw N, Jayaraman K (2014) Flax fibre and its composites—a review. Compos B 56:296–317

    Article  CAS  Google Scholar 

  • Zhang H, Ming R, Yang G, Li Y, Li Q, Shao H (2015) Influence of alkali treatment on flax fiber for use as reinforcements in polylactide stereocomplex composites. Polym Eng Sci 55:2553–2558

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Ministry of Education, Science and Technological development of the Republic of Serbia for financial support through the project OI 172029. The authors also thank Veljko R. Đokić (Innovation center of Faculty of Technology and Metallurgy, University of Belgrade) for obtaining FE-SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjana M. Kostić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazić, B.D., Pejić, B.M., Kramar, A.D. et al. Influence of hemicelluloses and lignin content on structure and sorption properties of flax fibers (Linum usitatissimum L.). Cellulose 25, 697–709 (2018). https://doi.org/10.1007/s10570-017-1575-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1575-4

Keywords

Navigation