Skip to main content
Log in

Cellulose nanocrystals as reinforcements for collagen-based casings with low gas transmission

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose nanocrystals (CNCs) of excellent mechanical properties, high purity, high aspect ratio, and cost-efficient production have drawn many attentions as a new class of reinforcement nanofillers. We chose CNCs as reinforcement nanofillers, which were incorporated in collagen to prepare CNCs/collagen casings by a traditional extruding method. The effects of CNCs on these casings were investigated. The dispersity and compatibility of CNCs within the collagen are rather good. The presence of CNCs can improve the light transmittance, barrier property, tensile strength, Young’s modulus, and thermostability of the CNCs/collagen casings, where collagen might cross-link with CNCs by electrostatic and hydrogen bonding interaction. When the CNCs content is 4 wt%, the water vapor permeability of CNCs/collagen casing reaches the minimum of 0.18 g·mm/h·m2·KPa. That concentration gave the highest light transmittance, and the mechanical properties were optimal. The development of CNCs/collagen casings represents an important potential to extend shelf life by the prevention of lipid oxidation and water loss of sausages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad M, Hani NM, Nirmal NP, Fazial FF, Mohtar NF, Romli SR (2015) Optical and thermo-mechanical properties of composite films based on fish gelatin/rice flour fabricated by casting technique. Prog Org Coat 84:115–127

    Article  CAS  Google Scholar 

  • Ahmad M, Nirmal NP, Danish M, Chuprom J, Jafarzedeh S (2016) Characterisation of composite films fabricated from collagen/chitosan and collagen/soy protein isolate for food packaging applications. RSC Adv 6(85):82191–82204

    Article  CAS  Google Scholar 

  • An X, Wen Y, Cheng D, Zhu X, Ni Y (2016) Preparation of cellulose nano-crystals through a sequential process of cellulase pretreatment and acid hydrolysis. Cellulose 23(4):2409–2420

    Article  CAS  Google Scholar 

  • An X, Cheng D, Shen J, Jia Q, He Z, Zheng L, Khan A, Sun B, Xiong B, Ni Y (2017) Nanocellulosic materials: research/production activities and applications. J Bioresour Bioprod 2(2):45–49

    Google Scholar 

  • Arjmandi R, Hassan A, Eichhorn SJ, Mohamad Haafiz MK, Zakaria Z, Tanjung FA (2015) Enhanced ductility and tensile properties of hybrid montmorillonite/cellulose nanowhiskers reinforced polylactic acid nanocomposites. J Mater Sci 50(8):3118–3130

    Article  CAS  Google Scholar 

  • Aulin C, Salazar-Alvarez G, Lindstrom T (2012) High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale 4(20):6622–6628

    Article  CAS  Google Scholar 

  • Cha R, He Z, Ni Y (2012) Preparation and characterization of thermal/pH-sensitive hydrogel from carboxylated nanocrystalline cellulose. Carbohydr Polym 88(2):713–718

    Article  CAS  Google Scholar 

  • Cha R, Wang C, Cheng S, He Z, Jiang X (2014) Using carboxylated nanocrystalline cellulose as an additive in cellulosic paper and poly (vinyl alcohol) fiber paper. Carbohydr Polym 110:298–301

    Article  CAS  Google Scholar 

  • Chen R, Huang C, Ke Q, He C, Wang H, Mo X (2010) Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications. Colloid Surface B 79(2):315–325

    Article  CAS  Google Scholar 

  • Chen J, Lin N, Huang J, Dufresne A (2015) Highly alkynyl-functionalization of cellulose nanocrystals and advanced nanocomposites thereof via click chemistry. Polym Chem 6(24):4385–4395

    Article  CAS  Google Scholar 

  • Cheng X, Li Y, Zuo Y, Zhang L, Li J, Wang H (2009) Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Mater Sci Eng, C 29(1):29–35

    Article  CAS  Google Scholar 

  • Cheng S, Zhang Y, Cha R, Yang J, Jiang X (2016) Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties. Nanoscale 8(2):973–978

    Article  CAS  Google Scholar 

  • Dai L, Long Z, Zhao Y, Wang B, Chen J (2016) Comparison of hydroxypropyl and carboxymethyl guar for the preparation of nanocellulose composite films. Cellulose 23(5):2989–2999

    Article  CAS  Google Scholar 

  • Dai L, Long Z, Chen J, An X, Cheng D, Khan A, Ni Y (2017) Robust guar gum/cellulose nanofibrils multilayer films with good barrier properties. ACS Appl Mater Interfaces 9(6):5477–5485

    Article  CAS  Google Scholar 

  • Devro (2017) Annual report and accounts 2016. Devro plc, England

    Google Scholar 

  • Elango J, Robinson JS, Geevaretnam J, Rupia EJ, Arumugam V, Durairaj S, Wenhui W (2016) Physicochemical and rheological properties of composite shark catfish (pangasius pangasius) skin collagen films integrated with chitosan and calcium salts. J Food Biochem 40(3):304–315

    Article  CAS  Google Scholar 

  • Fu G, He A, Jin Y, Cheng Q, Song J (2012) Fabrication of hollow silica nanorods using nanocrystalline cellulose as templates. BioResources 7(2):2319–2329

    Article  CAS  Google Scholar 

  • Hu F, Lin N, Chang PR, Huang J (2015) Reinforcement and nucleation of acetylated cellulose nanocrystals in foamed polyester composites. Carbohydr Polym 129:208–215

    Article  CAS  Google Scholar 

  • Jia C, Chen L, Shao Z, Agarwal UP, Hu L, Zhu JY (2017) Using a fully recyclable dicarboxylic acid for producing dispersible and thermally stable cellulose nanomaterials from different cellulosic sources. Cellulose 24(6):2483–2498

    Article  CAS  Google Scholar 

  • Li W, Guo R, Lan Y, Zhang Y, Xue W, Zhang Y (2014) Preparation and properties of cellulose nanocrystals reinforced collagen composite films. J Biomed Mater Res A 102(4):1131–1139

    Article  Google Scholar 

  • Mano JF, Koniarova D, Reis RL (2003) Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. J Mater Sci Mater Med 14(2):127–135

    Article  CAS  Google Scholar 

  • Nair SS, Zhu J, Deng Y, Ragauskas AJ (2014) High performance green barriers based on nanocellulose. Sustain Chem Process 2(1):23–29

    Article  Google Scholar 

  • Ni C, Wei Y, Hu Q, Li X, Liu B, Zhao Q, Zhang M, Li Y, Hu W (2016) Nanocystalline cellulose reinforced sulfonated fluorenyl-containing polyaryletherketones for proton exchange membranes. Solid State Ionics 297:29–35

    Article  CAS  Google Scholar 

  • Pereira AL, do Nascimento DM, Souza Filho Mde S, Morais JP, Vasconcelos NF, Feitosa JP, Brigida AI, Rosa Mde F (2014) Improvement of polyvinyl alcohol properties by adding nanocrystalline cellulose isolated from banana pseudostems. Carbohydr Polym 112:165–172

    Article  CAS  Google Scholar 

  • Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromol 11:674–681

    Article  CAS  Google Scholar 

  • Rodrigues APH, Pereira IM, de Souza SD, Gil CSB, Machado G, Carvalho SM, Pereira FV, Paiva PRP, de Oliveira LCA, Patricio SDO (2017) Control of properties of nanocomposites bio-based collagen and cellulose nanocrystals. Cellulose 24(4):1731–1744

    Article  CAS  Google Scholar 

  • Saxena A, Elder TJ, Kenvin J, Ragauskas AJ (2010) High oxygen nanocomposite barrier films based on xylan and nanocrystalline cellulose. Nano-Micro Lett 2(4):235–241

    Article  CAS  Google Scholar 

  • Shin MK, Spinks GM, Shin SR, Kim SI, Kim SJ (2009) Nanocomposite hydrogel with high toughness for bioactuators. Adv Mater 21:1712–1715

    Article  CAS  Google Scholar 

  • Song J, Fu G, Cheng Q, Jin Y (2014) Bimodal mesoporous silica nanotubes fabricated by dual templates of CTAB and bare nanocrystalline cellulose. Ind Eng Chem Res 53(2):708–714

    Article  CAS  Google Scholar 

  • Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16(1):75–85

    Article  CAS  Google Scholar 

  • Tang Y, He Z, Mosseler JA, Ni Y (2014a) Production of highly electro-conductive cellulosic paper via surface coating of carbon nanotube/graphene oxide nanocomposites using nanocrystalline cellulose as a binder. Cellulose 21(6):4569–4581

    Article  CAS  Google Scholar 

  • Tang Y, Yang S, Zhang N, Zhang J (2014b) Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose 21(1):335–346

    Article  CAS  Google Scholar 

  • Tang Y, Shen X, Zhang J, Guo D, Kong F, Zhang N (2015) Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication. Carbohydr Polym 125:360–366

    Article  CAS  Google Scholar 

  • Vieira MGA, da Silva MA, dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47(3):254–263

    Article  CAS  Google Scholar 

  • Wang Q, Zhu J, Reiner RS, Verrill SP, Baxa U, McNeil SE (2012) Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19:2033–2047

    Article  CAS  Google Scholar 

  • Wang Q, Zhao X, Zhu J (2014) Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs). Ind Eng Chem Res 53(27):11007–11014

    Article  CAS  Google Scholar 

  • Wei Y, Li X, Hu Q, Ni C, Liu B, Zhang M, Zhang H, Hu W (2016) Sulfonated nanocrystal cellulose/sulfophenylated poly(ether ether ketone ketone) composites for proton exchange membranes. RSC Adv 6(69):65072–65080

    Article  CAS  Google Scholar 

  • Yang S, Tang Y, Wang J, Kong F, Zhang J (2014) Surface treatment of cellulosic paper with starch-based composites reinforced with nanocrystalline cellulose. Ind Eng Chem Res 53(36):13980–13988

    Article  CAS  Google Scholar 

  • Yang L, Lu S, Li J, Zhang F, Cha R (2016) Nanocrystalline cellulose-dispersed AKD emulsion for enhancing the mechanical and multiple barrier properties of surface-sized paper. Carbohydr Polym 136:1035–1040

    Article  CAS  Google Scholar 

  • Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17(2):153–155

    Article  CAS  Google Scholar 

  • Zhang Y, Zhao Q, Wang H, Jiang X, Cha R (2017) Preparation of green and gelatin-free nanocrystalline cellulose capsules. Carbohydr Polym 164:358–363

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Independent Innovation and Achievement Transformation Project in Shandong Province (2014CGZH0303), the Ministry of Science and Technology of China (2013YQ190467), Chinese Academy of Sciences (XDA09030305), and the National Science Foundation of China (81361140345, 51373043, 21535001) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruitao Cha or Xingyu Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, K., Cha, R., Zhang, Y. et al. Cellulose nanocrystals as reinforcements for collagen-based casings with low gas transmission. Cellulose 25, 463–471 (2018). https://doi.org/10.1007/s10570-017-1569-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1569-2

Keywords

Navigation