, Volume 25, Issue 1, pp 463–471 | Cite as

Cellulose nanocrystals as reinforcements for collagen-based casings with low gas transmission

  • Keying Long
  • Ruitao Cha
  • Yapei Zhang
  • Juanjuan Li
  • Fangping Ren
  • Xingyu Jiang
Original Paper


Cellulose nanocrystals (CNCs) of excellent mechanical properties, high purity, high aspect ratio, and cost-efficient production have drawn many attentions as a new class of reinforcement nanofillers. We chose CNCs as reinforcement nanofillers, which were incorporated in collagen to prepare CNCs/collagen casings by a traditional extruding method. The effects of CNCs on these casings were investigated. The dispersity and compatibility of CNCs within the collagen are rather good. The presence of CNCs can improve the light transmittance, barrier property, tensile strength, Young’s modulus, and thermostability of the CNCs/collagen casings, where collagen might cross-link with CNCs by electrostatic and hydrogen bonding interaction. When the CNCs content is 4 wt%, the water vapor permeability of CNCs/collagen casing reaches the minimum of 0.18 g·mm/h·m2·KPa. That concentration gave the highest light transmittance, and the mechanical properties were optimal. The development of CNCs/collagen casings represents an important potential to extend shelf life by the prevention of lipid oxidation and water loss of sausages.


Cellulose nanocrystals Oxygen barrier property Water vapor permeability Collagen Sausage casing 



We thank the Independent Innovation and Achievement Transformation Project in Shandong Province (2014CGZH0303), the Ministry of Science and Technology of China (2013YQ190467), Chinese Academy of Sciences (XDA09030305), and the National Science Foundation of China (81361140345, 51373043, 21535001) for financial support.


  1. Ahmad M, Hani NM, Nirmal NP, Fazial FF, Mohtar NF, Romli SR (2015) Optical and thermo-mechanical properties of composite films based on fish gelatin/rice flour fabricated by casting technique. Prog Org Coat 84:115–127CrossRefGoogle Scholar
  2. Ahmad M, Nirmal NP, Danish M, Chuprom J, Jafarzedeh S (2016) Characterisation of composite films fabricated from collagen/chitosan and collagen/soy protein isolate for food packaging applications. RSC Adv 6(85):82191–82204CrossRefGoogle Scholar
  3. An X, Wen Y, Cheng D, Zhu X, Ni Y (2016) Preparation of cellulose nano-crystals through a sequential process of cellulase pretreatment and acid hydrolysis. Cellulose 23(4):2409–2420CrossRefGoogle Scholar
  4. An X, Cheng D, Shen J, Jia Q, He Z, Zheng L, Khan A, Sun B, Xiong B, Ni Y (2017) Nanocellulosic materials: research/production activities and applications. J Bioresour Bioprod 2(2):45–49Google Scholar
  5. Arjmandi R, Hassan A, Eichhorn SJ, Mohamad Haafiz MK, Zakaria Z, Tanjung FA (2015) Enhanced ductility and tensile properties of hybrid montmorillonite/cellulose nanowhiskers reinforced polylactic acid nanocomposites. J Mater Sci 50(8):3118–3130CrossRefGoogle Scholar
  6. Aulin C, Salazar-Alvarez G, Lindstrom T (2012) High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale 4(20):6622–6628CrossRefGoogle Scholar
  7. Cha R, He Z, Ni Y (2012) Preparation and characterization of thermal/pH-sensitive hydrogel from carboxylated nanocrystalline cellulose. Carbohydr Polym 88(2):713–718CrossRefGoogle Scholar
  8. Cha R, Wang C, Cheng S, He Z, Jiang X (2014) Using carboxylated nanocrystalline cellulose as an additive in cellulosic paper and poly (vinyl alcohol) fiber paper. Carbohydr Polym 110:298–301CrossRefGoogle Scholar
  9. Chen R, Huang C, Ke Q, He C, Wang H, Mo X (2010) Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications. Colloid Surface B 79(2):315–325CrossRefGoogle Scholar
  10. Chen J, Lin N, Huang J, Dufresne A (2015) Highly alkynyl-functionalization of cellulose nanocrystals and advanced nanocomposites thereof via click chemistry. Polym Chem 6(24):4385–4395CrossRefGoogle Scholar
  11. Cheng X, Li Y, Zuo Y, Zhang L, Li J, Wang H (2009) Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Mater Sci Eng, C 29(1):29–35CrossRefGoogle Scholar
  12. Cheng S, Zhang Y, Cha R, Yang J, Jiang X (2016) Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties. Nanoscale 8(2):973–978CrossRefGoogle Scholar
  13. Dai L, Long Z, Zhao Y, Wang B, Chen J (2016) Comparison of hydroxypropyl and carboxymethyl guar for the preparation of nanocellulose composite films. Cellulose 23(5):2989–2999CrossRefGoogle Scholar
  14. Dai L, Long Z, Chen J, An X, Cheng D, Khan A, Ni Y (2017) Robust guar gum/cellulose nanofibrils multilayer films with good barrier properties. ACS Appl Mater Interfaces 9(6):5477–5485CrossRefGoogle Scholar
  15. Devro (2017) Annual report and accounts 2016. Devro plc, EnglandGoogle Scholar
  16. Elango J, Robinson JS, Geevaretnam J, Rupia EJ, Arumugam V, Durairaj S, Wenhui W (2016) Physicochemical and rheological properties of composite shark catfish (pangasius pangasius) skin collagen films integrated with chitosan and calcium salts. J Food Biochem 40(3):304–315CrossRefGoogle Scholar
  17. Fu G, He A, Jin Y, Cheng Q, Song J (2012) Fabrication of hollow silica nanorods using nanocrystalline cellulose as templates. BioResources 7(2):2319–2329CrossRefGoogle Scholar
  18. Hu F, Lin N, Chang PR, Huang J (2015) Reinforcement and nucleation of acetylated cellulose nanocrystals in foamed polyester composites. Carbohydr Polym 129:208–215CrossRefGoogle Scholar
  19. Jia C, Chen L, Shao Z, Agarwal UP, Hu L, Zhu JY (2017) Using a fully recyclable dicarboxylic acid for producing dispersible and thermally stable cellulose nanomaterials from different cellulosic sources. Cellulose 24(6):2483–2498CrossRefGoogle Scholar
  20. Li W, Guo R, Lan Y, Zhang Y, Xue W, Zhang Y (2014) Preparation and properties of cellulose nanocrystals reinforced collagen composite films. J Biomed Mater Res A 102(4):1131–1139CrossRefGoogle Scholar
  21. Mano JF, Koniarova D, Reis RL (2003) Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. J Mater Sci Mater Med 14(2):127–135CrossRefGoogle Scholar
  22. Nair SS, Zhu J, Deng Y, Ragauskas AJ (2014) High performance green barriers based on nanocellulose. Sustain Chem Process 2(1):23–29CrossRefGoogle Scholar
  23. Ni C, Wei Y, Hu Q, Li X, Liu B, Zhao Q, Zhang M, Li Y, Hu W (2016) Nanocystalline cellulose reinforced sulfonated fluorenyl-containing polyaryletherketones for proton exchange membranes. Solid State Ionics 297:29–35CrossRefGoogle Scholar
  24. Pereira AL, do Nascimento DM, Souza Filho Mde S, Morais JP, Vasconcelos NF, Feitosa JP, Brigida AI, Rosa Mde F (2014) Improvement of polyvinyl alcohol properties by adding nanocrystalline cellulose isolated from banana pseudostems. Carbohydr Polym 112:165–172CrossRefGoogle Scholar
  25. Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromol 11:674–681CrossRefGoogle Scholar
  26. Rodrigues APH, Pereira IM, de Souza SD, Gil CSB, Machado G, Carvalho SM, Pereira FV, Paiva PRP, de Oliveira LCA, Patricio SDO (2017) Control of properties of nanocomposites bio-based collagen and cellulose nanocrystals. Cellulose 24(4):1731–1744CrossRefGoogle Scholar
  27. Saxena A, Elder TJ, Kenvin J, Ragauskas AJ (2010) High oxygen nanocomposite barrier films based on xylan and nanocrystalline cellulose. Nano-Micro Lett 2(4):235–241CrossRefGoogle Scholar
  28. Shin MK, Spinks GM, Shin SR, Kim SI, Kim SJ (2009) Nanocomposite hydrogel with high toughness for bioactuators. Adv Mater 21:1712–1715CrossRefGoogle Scholar
  29. Song J, Fu G, Cheng Q, Jin Y (2014) Bimodal mesoporous silica nanotubes fabricated by dual templates of CTAB and bare nanocrystalline cellulose. Ind Eng Chem Res 53(2):708–714CrossRefGoogle Scholar
  30. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16(1):75–85CrossRefGoogle Scholar
  31. Tang Y, He Z, Mosseler JA, Ni Y (2014a) Production of highly electro-conductive cellulosic paper via surface coating of carbon nanotube/graphene oxide nanocomposites using nanocrystalline cellulose as a binder. Cellulose 21(6):4569–4581CrossRefGoogle Scholar
  32. Tang Y, Yang S, Zhang N, Zhang J (2014b) Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose 21(1):335–346CrossRefGoogle Scholar
  33. Tang Y, Shen X, Zhang J, Guo D, Kong F, Zhang N (2015) Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication. Carbohydr Polym 125:360–366CrossRefGoogle Scholar
  34. Vieira MGA, da Silva MA, dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47(3):254–263CrossRefGoogle Scholar
  35. Wang Q, Zhu J, Reiner RS, Verrill SP, Baxa U, McNeil SE (2012) Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19:2033–2047CrossRefGoogle Scholar
  36. Wang Q, Zhao X, Zhu J (2014) Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs). Ind Eng Chem Res 53(27):11007–11014CrossRefGoogle Scholar
  37. Wei Y, Li X, Hu Q, Ni C, Liu B, Zhang M, Zhang H, Hu W (2016) Sulfonated nanocrystal cellulose/sulfophenylated poly(ether ether ketone ketone) composites for proton exchange membranes. RSC Adv 6(69):65072–65080CrossRefGoogle Scholar
  38. Yang S, Tang Y, Wang J, Kong F, Zhang J (2014) Surface treatment of cellulosic paper with starch-based composites reinforced with nanocrystalline cellulose. Ind Eng Chem Res 53(36):13980–13988CrossRefGoogle Scholar
  39. Yang L, Lu S, Li J, Zhang F, Cha R (2016) Nanocrystalline cellulose-dispersed AKD emulsion for enhancing the mechanical and multiple barrier properties of surface-sized paper. Carbohydr Polym 136:1035–1040CrossRefGoogle Scholar
  40. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17(2):153–155CrossRefGoogle Scholar
  41. Zhang Y, Zhao Q, Wang H, Jiang X, Cha R (2017) Preparation of green and gelatin-free nanocrystalline cellulose capsules. Carbohydr Polym 164:358–363CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in NanoscienceNational Center for NanoScience and TechnologyBeijingChina
  2. 2.College of Chemical Engineering and Material ScienceTianjin University of Science and TechnologyTianjinChina
  3. 3.Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer ChemistryNankai UniversityTianjinChina
  4. 4.The University of Chinese Academy of SciencesBeijingChina

Personalised recommendations