Advertisement

Cellulose

, Volume 25, Issue 1, pp 449–461 | Cite as

Cellulose nanofibres as biomaterial for nano-reinforcement of poly[styrene-(ethylene-co-butylene)-styrene] triblock copolymer

  • Chandravati Yadav
  • Arun Saini
  • Pradip K. Maji
Original Paper

Abstract

Cellulose nanofibres (CNFs) obtained from waste mango wood scrap were used for the preparation of nanocomposites with SEBS (poly[styrene-(ethylene-co-butylene)-styrene]) and SEBS-g-MA (SEBS-maleic anhydride grafted). Results revealed the incompatibility of CNFs with unmodified SEBS due to the lack of interaction between polar and nonpolar groups. The polar maleic anhydride groups in SEBS-g-MA (mSEBS) demonstrated a strong interfacial interaction with CNFs showing a compatible association. Nanocomposite films with very minute loading of CNFs [0.005 phr (parts per hundred resin)] resulted in a substantial increment in Young’s modulus (98% increment) and tensile strength (70% improvement) as compared to neat mSEBS film along with increment in elongation at break. The nanocomposite films showed the integration of CNFs as an interwoven thread-like structure in the polymer matrix at 0.001 phr. Polymer coated continuous foam/porous network microstructure was observed at 0.005 phr loading.

Keywords

Cellulose nanofibres Nanocomposites Thermoplastic elastomer Mechanical properties 

Notes

Acknowledgments

This research project has been supported by the Science and Engineering Research Board, Govt of India, under the Early Career Research Award (Grant No. ECR/2016/000621/CS).

Supplementary material

10570_2017_1567_MOESM1_ESM.docx (698 kb)
Supplementary material 1 (DOCX 698 kb)

References

  1. Arrakhiz FZ, Benmoussa K, Bouhfid R, Qaiss A (2013) Pine cone fiber/clay hybrid composite: mechanical and thermal properties. Mater Des 50:376–381CrossRefGoogle Scholar
  2. Auad ML, Mosiewicki MA, Richardson T et al (2010) Nanocomposites made from cellulose nanocrystals and tailored segmented polyurethanes. J Appl Polym Sci 115:1215–1225CrossRefGoogle Scholar
  3. Balsamo V, Lorenzo AT, Müller AJ, Corona-Galván S, Fraga Trillo LM, Santa Quiteria VR (2006) Structure, properties and applications of ABA and ABC triblock copolymers with hydrogenated polybutadiene blocks. In: Lazzari M, Liu G, Lecommandoux S (eds) Block copolymers in nanoscience. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 367–389Google Scholar
  4. Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169CrossRefGoogle Scholar
  5. Chirayil CJ, Mathew L, Thomas S (2014) Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Rev Adv Mater Sci 37:20–28Google Scholar
  6. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44:1624–1652CrossRefGoogle Scholar
  7. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227CrossRefGoogle Scholar
  8. Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohydr Polym 80:852–859CrossRefGoogle Scholar
  9. Famá L, Gerschenson L, Goyanes S (2009) Starch-vegetable fibre composites to protect food products. Carbohydr Polym 75:230–235CrossRefGoogle Scholar
  10. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596CrossRefGoogle Scholar
  11. Frone AN, Panaitescu DM, Spataru DD et al (2011) Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication. BioResources 6:487–512Google Scholar
  12. Ganguly A, Bhowmick AK (2009) Effect of polar modification on morphology and properties of styrene-(ethylene-co-butylene)-styrene triblock copolymer and its montmorillonite clay-based nanocomposites. J Mater Sci 44:903–918CrossRefGoogle Scholar
  13. Ganguly A, De Sarkar M, Bhowmick AK (2006) Thermoplastic elastomeric nanocomposites from poly[styrene-(ethylene-co-butylene)-styrene] triblock copolymer and clay: preparation and characterization. J Appl Polym Sci 100:2040–2052CrossRefGoogle Scholar
  14. Grigorescu RM, Ciuprina F, Ghioca P et al (2016) Mechanical and dielectric properties of SEBS modified by graphite inclusion and composite interface. J Phys Chem Solids 89:97–106CrossRefGoogle Scholar
  15. He H, Li K, Wang J et al (2011) Study on thermal and mechanical properties of nano-calcium carbonate/epoxy composites. Mater Des 32:4521–4527CrossRefGoogle Scholar
  16. Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980Google Scholar
  17. Kakou CA, Essabir H, Bensalah M-O et al (2015) Hybrid composites based on polyethylene and coir/oil palm fibers. J Reinf Plast Compos 34:1684–1697CrossRefGoogle Scholar
  18. Kazayawoko M, Balatinecz JJ, Woodhams RT (1997) Diffuse reflectance Fourier transform infrared spectra of wood fibers treated with maleated polypropylenes. J Appl Polym Sci 66:1163–1173CrossRefGoogle Scholar
  19. Khalil HPSA, Davoudpour Y, Islam MN et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665CrossRefGoogle Scholar
  20. Kwee T, Mauritz KA, Beyer FL (2005) Poly[styrene-b-maleated (ethylene/butylene)-b-styrene] (mSEBS) block copolymers and mSEBS/inorganic nanocomposites: I. Morphology and FTIR characterization. Polymer (Guildf) 46:3871–3883CrossRefGoogle Scholar
  21. Latko P, Bogucka A, Boczkowska A (2015) Characterization of thermoplastic elastomers based composites doped with carbon black. Int J Mech Eng Autom 2:171–176Google Scholar
  22. Li Y, Shimizu H (2009) Toward a stretchable, elastic, and electrically conductive nanocomposite: morphology and properties of poly [styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotube composites fabricated by high-shear processing. Macromolecules 42:2587–2593CrossRefGoogle Scholar
  23. Maji PK, Bhowmick AK (2009) Influence of number of functional groups of hyperbranched polyol on cure kinetics and physical properties of polyurethanes. J Polym Sci Part A Polym Chem 47:731–745CrossRefGoogle Scholar
  24. Maji PK, Guchhait PK, Bhowmick AK (2009) Effect of the microstructure of a hyperbranched polymer and nanoclay loading on the morphology and properties of novel polyurethane nanocomposites. ACS Appl Mater Interfaces 1:289–300CrossRefGoogle Scholar
  25. Maji PK, Das NK, Bhowmick AK (2010) Preparation and properties of polyurethane nanocomposites of novel architecture as advanced barrier materials. Polymer (Guildf) 51:1100–1110CrossRefGoogle Scholar
  26. Mittal G, Dhand V, Rhee KY et al (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25CrossRefGoogle Scholar
  27. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  28. Ocando C, Tercjak A, Martín MD et al (2009) Morphology development in thermosetting mixtures through the variation on chemical functionalization degree of poly(styrene-b-butadiene) diblock copolymer modifiers. Thermomechanical properties. Macromolecules 42:6215–6224CrossRefGoogle Scholar
  29. Ojijo V, Sinha Ray S (2013) Processing strategies in bionanocomposites. Prog Polym Sci 38:1543–1589CrossRefGoogle Scholar
  30. Pattanayak A, Jana SC (2005a) Synthesis of thermoplastic polyurethane nanocomposites of reactive nanoclay by bulk polymerization methods. Polymer (Guildf) 46:3275–3288CrossRefGoogle Scholar
  31. Pattanayak A, Jana SC (2005b) Thermoplastic polyurethane nanocomposites of reactive silicate clays: effects of soft segments on properties. Polymer (Guildf) 46:5183–5193CrossRefGoogle Scholar
  32. Pei A, Malho JM, Ruokolainen J et al (2011) Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44:4422–4427CrossRefGoogle Scholar
  33. Pelissari FM, Sobral PJDA, Menegalli FC (2014) Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21:417–432CrossRefGoogle Scholar
  34. Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube—polystyrene composites. Appl Phys Lett 76:2868CrossRefGoogle Scholar
  35. Reddy MM, Vivekanandhan S, Misra M et al (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38:1653–1689CrossRefGoogle Scholar
  36. Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRefGoogle Scholar
  37. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers (Basel) 2:728–765CrossRefGoogle Scholar
  38. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  39. Stankovich S, Dikin DA, Dommett GHB et al (2006) Graphene-based composite materials. Nature 442:282–286CrossRefGoogle Scholar
  40. Stoyanov H, Kollosche M, McCarthy DN, Kofod G (2010) Molecular composites with enhanced energy density for electroactive polymers. J Mater Chem 20:7558–7564CrossRefGoogle Scholar
  41. Stoyanov H, Kollosche M, Risse S et al (2011) Elastic block copolymer nanocomposites with controlled interfacial interactions for artificial muscles with direct voltage control. Soft Matter 7:194–202CrossRefGoogle Scholar
  42. Stuart BH (ed) (2004) Organic molecules. In: Infrared spectroscopy: fundamentals and applications. Wiley, Hoboken, NJ, pp 70–94Google Scholar
  43. Toivonen MS, Kurki-Suonio S, Schacher FH et al (2015) Water-resistant, transparent hybrid nanopaper by physical cross-linking with chitosan. Biomacromol 16:1062–1071CrossRefGoogle Scholar
  44. Vaia RA, Maguire JF (2007) Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers. Chem Mater 19:2736–2751CrossRefGoogle Scholar
  45. Visakh PM, Thomas S, Chandra AK, Mathew AP (2013) Advances in elastomers I: blends and interpenetrating networks. Springer, BerlinGoogle Scholar
  46. Wu CN, Saito T, Fujisawa S et al (2012) Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromol 13:1927–1932CrossRefGoogle Scholar
  47. Xu X, Liu F, Jiang L et al (2013) Cellulose nanocrystals versus cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009CrossRefGoogle Scholar
  48. Yadav C, Saini A, Maji PK (2017) Energy efficient facile extraction process of cellulose nanofibres and their dimensional characterization using light scattering techniques. Carbohydr Polym 165:276–284CrossRefGoogle Scholar
  49. Yao X, Qi X, He Y et al (2014) Simultaneous reinforcing and toughening of polyurethane via grafting on the surface of microfibrillated cellulose. ACS Appl Mater Interfaces 6:2497–2507CrossRefGoogle Scholar
  50. Zalakain I, Ramos JA, Fernandez R et al (2011) Nanostructuration of self-assembled poly(styrene-b-isoprene-b-styrene) block copolymer thin films in a highly oriented pyrolytic graphite substrate. Thin Solid Films 519:1882–1885CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Chandravati Yadav
    • 1
  • Arun Saini
    • 1
  • Pradip K. Maji
    • 1
  1. 1.Department of Polymer and Process EngineeringIndian Institute of Technology RoorkeeSaharanpurIndia

Personalised recommendations