Cellulose

, Volume 25, Issue 1, pp 439–448 | Cite as

Mechanisms contributing to mechanical property changes in composites of polypropylene reinforced with spray-dried cellulose nanofibrils

  • Lu Wang
  • Alec W. Roach
  • Douglas J. Gardner
  • Yousoo Han
Original Paper
  • 119 Downloads

Abstract

This study revealed the effects of spray-dried cellulose nanofibril (SDCNF) addition (3,10 and 30 wt%) and maleic anhydride polypropylene (MAPP) coupling agent (2 wt%) on the mechanical properties of polypropylene (PP). Results indicated that the elastic moduli of the PP composites increased as the SDCNF content increased above 10 wt%. The addition of MAPP into the SDCNF/PP composites did not improve the elastic moduli. Flexural strength of PP was improved when the SDCNF content increased above 10 wt%, while the tensile strength of PP decreased as the SDCNF content increased. The addition of MAPP into the SDCNF/PP composites increased the strength of the composites when the SDCNF content was above 10 wt%. Without the addition of MAPP, the composite’s impact strength did not exhibit a significant increase among the pure PP and SDCNF/PP composites. No significant differences in crystallinity or crystal forms were found in the pure PP and PP/MAPP/SDCNF composites. The spherulitic size of PP was reduced after adding SDCNF into the PP.

Keywords

Spray drying Cellulose nanofibrils Crystal morphology Impact strength Composites 

Notes

Acknowledgments

Funding is provided in part by the Maine Agricultural and Forest Experiment Station (MAFES) Project ME0-M-8-00527-13 and the USDA ARS Forest Products Research Agreement 58-0202-4-003. Authors thank Kelly Edwards in the Electron Microscopy Lab for section cutting and Dr. Mehdi Tajvidi in the School of Forest Resources for polarized light microscope observation at the University of Maine.

References

  1. Ahmed S, Jones FR (1990) A review of particulate reinforcement theories for polymer composites. J Mater Sci Lett 25(12):4933–4942CrossRefGoogle Scholar
  2. Arencón D, Velasco JI (2009) Fracture toughness of polypropylene-based particulate composites. Materials 2:2046–2094CrossRefGoogle Scholar
  3. Bengtsson M, Le Baillif M, Oksman K (2007) Extrusion and mechanical properties of highly filled cellulose fibre–polypropylene composites. Compos Part A Appl Sci Manuf 38(8):1922–1931CrossRefGoogle Scholar
  4. Bourbigot S, Garnier L, Revel B, Duquesne S (2013) Characterization of the morphology of iPP/sPP blends with various compositions. Express Polym Lett 7:224–237CrossRefGoogle Scholar
  5. Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M (2001) Review: current international research into cellulosic fibres and composites. J Mater Sci Lett 36(9):2107–2131CrossRefGoogle Scholar
  6. Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B Eng 39(6):933–961CrossRefGoogle Scholar
  7. Gardner DJ, Tajvidi M (2016) Hydrogen bonding in wood-based materials: an update. Wood Fiber Sci 48(4):234–244Google Scholar
  8. Gardner DJ, Han Y, Wang L (2015) Wood–plastic composite technology. Curr For Rep 1(3):139–150Google Scholar
  9. Hassan ML, Mathew AP, Hassan EA, Fadel SM, Oksman K (2014) Improving cellulose/polypropylene nanocomposites properties with chemical modified bagasse nanofibers and maleated polypropylene. J Reinf Plast Compos 3(1):26–36CrossRefGoogle Scholar
  10. Hiemenz PC, Lodge TP (2007) Polymer chemistry. CRC Press, Boca RatonGoogle Scholar
  11. Hodgkinson JM (2000) Mechanical testing of advanced fiber composites. CRC Press, Boca RatonCrossRefGoogle Scholar
  12. Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3(3):929–980Google Scholar
  13. Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292(1):5–31CrossRefGoogle Scholar
  14. Khalil HA, Bhat AH, Yusra AI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979CrossRefGoogle Scholar
  15. La Mantia FP, Morreale M (2011) Green composites: a brief review. Compos Part A Appl Sci Manuf 42:579–588CrossRefGoogle Scholar
  16. Landel RF, Nielsen LE (1993) Mechanical properties of polymers and composites. Marcel Dekker, New YorkGoogle Scholar
  17. Liu GR (1997) A step-by-step method of rule-of-mixture of fiber-and particle-reinforced composite materials. Compos Struct 40:313–322CrossRefGoogle Scholar
  18. Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262CrossRefGoogle Scholar
  19. Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6(5):1745–1766CrossRefGoogle Scholar
  20. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994CrossRefGoogle Scholar
  21. Peltola P, Välipakka E, Vuorinen J, Syrjälä S, Hanhi K (2006) Effect of rotational speed of twin screw extruder on the microstructure and rheological and mechanical properties of nanoclay-reinforced polypropylene nanocomposites. Polym Eng Sci 46(8):995–1000CrossRefGoogle Scholar
  22. Peng Y, Gardner DJ, Han Y (2011) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19(1):91–102CrossRefGoogle Scholar
  23. Peng Y, Han Y, Gardner DJ (2012) Spray-drying cellulose nanofibrils: effect of drying process parameters on particle morphology and size distribution. Wood Fiber Sci 44(4):448Google Scholar
  24. Peng Y, Gallegos SA, Gardner DJ, Han Y, Cai Z (2014) Maleic anhydride polypropylene modified cellulose nanofibril polypropylene nanocomposites with enhanced impact strength. Polym Compos 37(3):782–793CrossRefGoogle Scholar
  25. Saputra H, Simonsen J, Li K (2004) Effect of extractives on the flexural properties of wood/plastic composites. Compos Interface 11(7):515–524CrossRefGoogle Scholar
  26. Sato N, Kurauchi T, Sato S, Kamigaito O (1988) Reinforcing mechanism by small diameter fiber in short fiber composite. J Compos Mater 22(9):850–873CrossRefGoogle Scholar
  27. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765CrossRefGoogle Scholar
  28. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRefGoogle Scholar
  29. Suzuki K, Okumura H, Kitagawa K, Sato S, Nakagaito AN, Yano H (2013) Development of continuous process enabling nanofibrillation of pulp and melt compounding. Cellulose 20(1):201–210CrossRefGoogle Scholar
  30. Suzuki K, Sato A, Okumura H, Hashimoto T, Nakagaito AN, Yano H (2014) Novel high-strength, micro fibrillated cellulose-reinforced polypropylene composites using a cationic polymer as compatibilizer. Cellulose 21(1):507–518CrossRefGoogle Scholar
  31. Tze WT, O’Neill SC, Tripp CP, Gardner DJ, Shaler SM (2007) Evaluation of load transfer in the cellulosic-fiber/polymer interphase using a micro-Raman tensile test. Wood Fiber Sci 39(1):184–195Google Scholar
  32. Wang L, Gardner DJ (2017) Effect of fused layer modeling (FLM) processing parameters on impact strength of cellular polypropylene. Polymer 113:74–80CrossRefGoogle Scholar
  33. Wang P, Liu J, Yu W, Zhou C (2011) Isothermal crystallization kinetics of highly filled wood plastic composites: effect of wood particles content and compatibilizer. J Macromol Sci B 50(12):2271–2289CrossRefGoogle Scholar
  34. Wang L, Sanders JE, Gardner DG, Han Y (2016) In-situ modification of cellulose nanofibrils by organosilanes during spray drying. Ind Crops Prod 93:129–135CrossRefGoogle Scholar
  35. Wang L, Gramlich WM, Gardner DJ (2017a) Improving the impact strength of Poly (lactic acid)(PLA) in fused layer modeling (FLM). Polymer 114:242–248CrossRefGoogle Scholar
  36. Wang L, Gardner DJ, Bousfield DW (2017b) Cellulose nanofibril-reinforced polypropylene composites for material extrusion: rheological properties. Polym Eng Sci.  https://doi.org/10.1002/pen.24615 Google Scholar
  37. Yang HS, Gardner DJ, Nader JW (2013a) Morphological properties of impact fracture surfaces and essential work of fracture analysis of cellulose nanofibril-filled polypropylene composites. J Appl Polym Sci 128(5):3064–3076CrossRefGoogle Scholar
  38. Yang HS, Kiziltas A, Gardner DJ (2013b) Thermal analysis and crystallinity study of cellulose nanofibril-filled polypropylene composites. J Therm Anal Calorim 113(2):673–682CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Advanced Structures and Composites CenterUniversity of MaineOronoUSA
  2. 2.School of Forest ResourcesUniversity of MaineOronoUSA

Personalised recommendations