Skip to main content
Log in

Mechanisms contributing to mechanical property changes in composites of polypropylene reinforced with spray-dried cellulose nanofibrils

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This study revealed the effects of spray-dried cellulose nanofibril (SDCNF) addition (3,10 and 30 wt%) and maleic anhydride polypropylene (MAPP) coupling agent (2 wt%) on the mechanical properties of polypropylene (PP). Results indicated that the elastic moduli of the PP composites increased as the SDCNF content increased above 10 wt%. The addition of MAPP into the SDCNF/PP composites did not improve the elastic moduli. Flexural strength of PP was improved when the SDCNF content increased above 10 wt%, while the tensile strength of PP decreased as the SDCNF content increased. The addition of MAPP into the SDCNF/PP composites increased the strength of the composites when the SDCNF content was above 10 wt%. Without the addition of MAPP, the composite’s impact strength did not exhibit a significant increase among the pure PP and SDCNF/PP composites. No significant differences in crystallinity or crystal forms were found in the pure PP and PP/MAPP/SDCNF composites. The spherulitic size of PP was reduced after adding SDCNF into the PP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed S, Jones FR (1990) A review of particulate reinforcement theories for polymer composites. J Mater Sci Lett 25(12):4933–4942

    Article  CAS  Google Scholar 

  • Arencón D, Velasco JI (2009) Fracture toughness of polypropylene-based particulate composites. Materials 2:2046–2094

    Article  Google Scholar 

  • Bengtsson M, Le Baillif M, Oksman K (2007) Extrusion and mechanical properties of highly filled cellulose fibre–polypropylene composites. Compos Part A Appl Sci Manuf 38(8):1922–1931

    Article  Google Scholar 

  • Bourbigot S, Garnier L, Revel B, Duquesne S (2013) Characterization of the morphology of iPP/sPP blends with various compositions. Express Polym Lett 7:224–237

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M (2001) Review: current international research into cellulosic fibres and composites. J Mater Sci Lett 36(9):2107–2131

    Article  CAS  Google Scholar 

  • Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B Eng 39(6):933–961

    Article  Google Scholar 

  • Gardner DJ, Tajvidi M (2016) Hydrogen bonding in wood-based materials: an update. Wood Fiber Sci 48(4):234–244

    CAS  Google Scholar 

  • Gardner DJ, Han Y, Wang L (2015) Wood–plastic composite technology. Curr For Rep 1(3):139–150

    Google Scholar 

  • Hassan ML, Mathew AP, Hassan EA, Fadel SM, Oksman K (2014) Improving cellulose/polypropylene nanocomposites properties with chemical modified bagasse nanofibers and maleated polypropylene. J Reinf Plast Compos 3(1):26–36

    Article  Google Scholar 

  • Hiemenz PC, Lodge TP (2007) Polymer chemistry. CRC Press, Boca Raton

    Google Scholar 

  • Hodgkinson JM (2000) Mechanical testing of advanced fiber composites. CRC Press, Boca Raton

    Book  Google Scholar 

  • Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3(3):929–980

    Google Scholar 

  • Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292(1):5–31

    Article  CAS  Google Scholar 

  • Khalil HA, Bhat AH, Yusra AI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979

    Article  Google Scholar 

  • La Mantia FP, Morreale M (2011) Green composites: a brief review. Compos Part A Appl Sci Manuf 42:579–588

    Article  Google Scholar 

  • Landel RF, Nielsen LE (1993) Mechanical properties of polymers and composites. Marcel Dekker, New York

    Google Scholar 

  • Liu GR (1997) A step-by-step method of rule-of-mixture of fiber-and particle-reinforced composite materials. Compos Struct 40:313–322

    Article  Google Scholar 

  • Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262

    Article  CAS  Google Scholar 

  • Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6(5):1745–1766

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    Article  CAS  Google Scholar 

  • Peltola P, Välipakka E, Vuorinen J, Syrjälä S, Hanhi K (2006) Effect of rotational speed of twin screw extruder on the microstructure and rheological and mechanical properties of nanoclay-reinforced polypropylene nanocomposites. Polym Eng Sci 46(8):995–1000

    Article  CAS  Google Scholar 

  • Peng Y, Gardner DJ, Han Y (2011) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19(1):91–102

    Article  Google Scholar 

  • Peng Y, Han Y, Gardner DJ (2012) Spray-drying cellulose nanofibrils: effect of drying process parameters on particle morphology and size distribution. Wood Fiber Sci 44(4):448

    CAS  Google Scholar 

  • Peng Y, Gallegos SA, Gardner DJ, Han Y, Cai Z (2014) Maleic anhydride polypropylene modified cellulose nanofibril polypropylene nanocomposites with enhanced impact strength. Polym Compos 37(3):782–793

    Article  Google Scholar 

  • Saputra H, Simonsen J, Li K (2004) Effect of extractives on the flexural properties of wood/plastic composites. Compos Interface 11(7):515–524

    Article  CAS  Google Scholar 

  • Sato N, Kurauchi T, Sato S, Kamigaito O (1988) Reinforcing mechanism by small diameter fiber in short fiber composite. J Compos Mater 22(9):850–873

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Article  Google Scholar 

  • Suzuki K, Okumura H, Kitagawa K, Sato S, Nakagaito AN, Yano H (2013) Development of continuous process enabling nanofibrillation of pulp and melt compounding. Cellulose 20(1):201–210

    Article  CAS  Google Scholar 

  • Suzuki K, Sato A, Okumura H, Hashimoto T, Nakagaito AN, Yano H (2014) Novel high-strength, micro fibrillated cellulose-reinforced polypropylene composites using a cationic polymer as compatibilizer. Cellulose 21(1):507–518

    Article  CAS  Google Scholar 

  • Tze WT, O’Neill SC, Tripp CP, Gardner DJ, Shaler SM (2007) Evaluation of load transfer in the cellulosic-fiber/polymer interphase using a micro-Raman tensile test. Wood Fiber Sci 39(1):184–195

    CAS  Google Scholar 

  • Wang L, Gardner DJ (2017) Effect of fused layer modeling (FLM) processing parameters on impact strength of cellular polypropylene. Polymer 113:74–80

    Article  CAS  Google Scholar 

  • Wang P, Liu J, Yu W, Zhou C (2011) Isothermal crystallization kinetics of highly filled wood plastic composites: effect of wood particles content and compatibilizer. J Macromol Sci B 50(12):2271–2289

    Article  CAS  Google Scholar 

  • Wang L, Sanders JE, Gardner DG, Han Y (2016) In-situ modification of cellulose nanofibrils by organosilanes during spray drying. Ind Crops Prod 93:129–135

    Article  Google Scholar 

  • Wang L, Gramlich WM, Gardner DJ (2017a) Improving the impact strength of Poly (lactic acid)(PLA) in fused layer modeling (FLM). Polymer 114:242–248

    Article  CAS  Google Scholar 

  • Wang L, Gardner DJ, Bousfield DW (2017b) Cellulose nanofibril-reinforced polypropylene composites for material extrusion: rheological properties. Polym Eng Sci. https://doi.org/10.1002/pen.24615

    Article  Google Scholar 

  • Yang HS, Gardner DJ, Nader JW (2013a) Morphological properties of impact fracture surfaces and essential work of fracture analysis of cellulose nanofibril-filled polypropylene composites. J Appl Polym Sci 128(5):3064–3076

    Article  CAS  Google Scholar 

  • Yang HS, Kiziltas A, Gardner DJ (2013b) Thermal analysis and crystallinity study of cellulose nanofibril-filled polypropylene composites. J Therm Anal Calorim 113(2):673–682

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding is provided in part by the Maine Agricultural and Forest Experiment Station (MAFES) Project ME0-M-8-00527-13 and the USDA ARS Forest Products Research Agreement 58-0202-4-003. Authors thank Kelly Edwards in the Electron Microscopy Lab for section cutting and Dr. Mehdi Tajvidi in the School of Forest Resources for polarized light microscope observation at the University of Maine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Roach, A.W., Gardner, D.J. et al. Mechanisms contributing to mechanical property changes in composites of polypropylene reinforced with spray-dried cellulose nanofibrils. Cellulose 25, 439–448 (2018). https://doi.org/10.1007/s10570-017-1556-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1556-7

Keywords

Navigation