Skip to main content
Log in

Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The use of nanocelluloses as strength-enhancing additives in papermaking is widely known since both cellulose nanofibers (CNF) and nanocrystals (CNC) present similar composition than paper but their exceptional properties in the nanometer scale confers a paper quality enhancement. However, some agglomeration problems in CNF and CNC through hydrogen bonding cause a lower improvement of mechanical properties of paper. Therefore, a better dispersion of both nanocelluloses can maximize their effect on paper properties, thus reducing the needed dose to get the same increment in tensile strength and then reducing material costs. To ease the implementation of these nanocelluloses in the production process of recycled paper, typically used operations of these industries have been used. Among them, those devoted to improve the homogeneous mixture of nanocellulose in the pulp suspension have been assessed. Firstly, pulping conditions were studied, including pulping time, temperature and need for soaking as variables. Secondly, some dispersing agents used in papermaking were considered, studying the effect of different types and doses. The highest tensile strength of paper was achieved by applying long pulping times (60 min), getting increments up to 30% with the use of soaking and polyacrylamide as retention system. However, with the use of a low dose of a dispersing agent (0.003%), tensile index can be still increased up to 20.6% avoiding these long times. This study can be of great interest of those researchers trying to implement the use of nanocelluloses as strength additive in papermaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahola S, Myllytie P, Osterberg M, Teerinen T, Laine J (2008) Effect of polymer adsorption on cellulose nanofibril water binding capacity and aggregation. BioResources 3:1315–1328

    Google Scholar 

  • Balea A, Blanco Á, Monte MC, Merayo N, Negro C (2016a) Effect of bleached eucalyptus and pine cellulose nanofibers on the physico-mechanical properties of cartonboard. BioResources 11:8123–8138

    CAS  Google Scholar 

  • Balea A, Merayo N, Fuente E, Delgado-Aguilar M, Mutje P, Blanco A, Negro C (2016b) Valorization of corn stalk by the production of cellulose nanofibers to improve recycled paper properties. BioResources 11:3416–3431

    CAS  Google Scholar 

  • Brodin FW, Gregersen OW, Syverud K (2014) Cellulose nanofibrils: challenges and possibilities as a paper additive or coating material—a review. Nord Pulp Pap Res J 29:156–166

    Article  CAS  Google Scholar 

  • Campano C, Balea A, Blanco A, Negro C (2016) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose 23:57–91

    Article  CAS  Google Scholar 

  • Campano C, Miranda R, Merayo N, Negro C, Blanco A (2017) Direct production of cellulose nanocrystals from old newspapers and recycled newsprint. Carbohydr Polym 173:489–496

    Article  CAS  Google Scholar 

  • CEPI (2015). Key statistics. European Pulp and Paper Industry

  • Chen LH, Wang QQ, Hirth K, Baez C, Agarwal UP, Zhu JY (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22:1753–1762

    Article  CAS  Google Scholar 

  • Coccia V, Cotana F, Cavalaglio G, Gelosia M, Petrozzi A (2014) Cellulose nanocrystals obtained from Cynara cardunculus and their application in the paper industry. Sustainability 6:5252–5264

    Article  CAS  Google Scholar 

  • Delgado-Aguilar M, Gonzalez I, Pelach MA, De La Fuente E, Negro C, Mutje P (2015) Improvement of deinked old newspaper/old magazine pulp suspensions by means of nanofibrillated cellulose addition. Cellulose 22:789–802

    Article  CAS  Google Scholar 

  • Fatehi P, Kititerakun R, Ni YH, Xiao HN (2010) Synergy of CMC and modified chitosan on strength properties of cellulosic fiber network. Carbohydr Polym 80:208–214

    Article  CAS  Google Scholar 

  • Fernandes SCM, Freire CSR, Silvestre AJD, Neto CP, Gandini A (2011) Novel materials based on chitosan and cellulose. Polym Int 60:875–882

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Gonzalez I, Boufi S, Pelach MA, Alcala M, Vilaseca F, Mutje P (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. BioResources 7:5167–5180

    Article  CAS  Google Scholar 

  • Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Cellulose 43:1519–1542

    CAS  Google Scholar 

  • Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  • Heitner C (1993) Light-induced yellowing of wood-containing papers—an evolution of the mechanism. In: Heitner C, Scaiano JC (eds) Photochemistry of lignocellulosic materials, vol 531. ACS symposium series. American Chemical Society, Washington, pp 2–25

    Chapter  Google Scholar 

  • Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromol 9:1579–1585

    Article  CAS  Google Scholar 

  • Hubbe MA (2013) Prospects for maintaining strength of paper and paperboard products while using less forest resources: a review. BioResources 9:1634–1763

    Article  Google Scholar 

  • Marx-Figini M (1978) Significance of the intrinsic viscosity ratio of unsubstituted and nitrated cellulose in different solvents. Die Angew Makromol Chem 72:161–171

    Article  CAS  Google Scholar 

  • Merayo N, Balea A, de la Fuente E, Blanco Á, Negro C (2017a) Interactions between cellulose nanofibers and retention systems in flocculation of recycled fibers. Cellulose 24:677–692

    Article  CAS  Google Scholar 

  • Merayo N, Balea A, de la Fuente E, Blanco Á, Negro C (2017b) Synergies between cellulose nanofibers and retention additives to improve recycled paper properties and the drainage process. Cellulose 24:2987–3000

    Article  CAS  Google Scholar 

  • Osong SH, Norgren S, Engstrand P (2016) Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose 23:93–123

    Article  CAS  Google Scholar 

  • Petroudy SRD, Syverud K, Chinga-Carrasco G, Ghasemain A, Resalati H (2014) Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper. Carbohydr Polym 99:311–318

    Article  Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5:1671–1677

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491

    Article  CAS  Google Scholar 

  • Salam A, Lucia LA, Jameel H (2013) A novel cellulose nanocrystals-based approach to improve the mechanical properties of recycled paper. ACS Sustain Chem Eng 1:1584–1592

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Suhr M, Klein G, Kourti I, Rodrigo Gonzalo M, Giner Santonja G, Roudier S, Delgado Sancho L (2015) Best available techniques (BAT) reference document for the production of pulp, paper and board. Institute for Prospective Technological Studies, Seville. https://doi.org/10.2791/370629

    Book  Google Scholar 

  • Sun B, Hou Q, Liu Z, Ni Y (2015) Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose 22:1135–1146

    Article  CAS  Google Scholar 

  • Taipale T, Osterberg M, Nykanen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020

    Article  CAS  Google Scholar 

  • Tasman JE, Berzins V (1957) The permanganate consumption of pulp materials. Tappi 40:691–704

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Economy and Competitiveness Ministry of Spain for the support of the project with reference CTQ2013-48090-C2-1-R and the Grant of C. Campano (BES-2014-068177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noemí Merayo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campano, C., Merayo, N., Balea, A. et al. Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper. Cellulose 25, 269–280 (2018). https://doi.org/10.1007/s10570-017-1552-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1552-y

Keywords

Navigation