Advertisement

Cellulose

, Volume 25, Issue 1, pp 573–582 | Cite as

Chemical crosslinking reinforced flexible cellulose nanofiber-supported cryogel

  • Huan Cheng
  • Yingzhan Li
  • Bijia Wang
  • Zhiping Mao
  • Hong Xu
  • Linping Zhang
  • Yi Zhong
  • Xiaofeng Sui
Original Paper

Abstract

A robust and flexible cellulose nanofiber (CNF)-supported cryogel was prepared by chemical crosslinking method using γ-glycidoxypropyltrimethoxysilane (GPTMS) and branched polyethylenimine (PEI). FT-IR, elemental analysis, EDS and solid state 13C NMR analysis revealed that the PEI had been successfully modified on cellulose via reacting with GPTMS. The obtained flexible cryogel displayed a three-dimensional structure composed of thin sheet. The maximal shape recovery of the CNF-supported cryogel from a 50% compression strain was up to 93% of its original thickness. The cryogel contained abundant amino groups and proved to be efficient in removing Cu2+ from solution with a maximum Cu2+ uptake of 138 mg/g. The adsorption kinetics curve fitted the pseudo-second-order model and the equilibrium absorption capacity fitted the Langmuir model. Moreover, adsorption capacity of the cryogel was up to 75% after four adsorption–desorption cycles (15 days).

Keywords

CNF-supported cryogel Crosslinking PEI Flexibility Copper adsorption 

Notes

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (No. 51403035), Programme of Introducing Talents of Discipline to Universities (No. 105-07-005735) and the Fundamental Research Funds for the Central Universities (No. 16D110510).

Supplementary material

10570_2017_1548_MOESM1_ESM.docx (725 kb)
Supplementary material 1 (DOCX 724 kb)

References

  1. Atalla RH, Gast JC, Sindorf DW, Bartuska VJ, Maciel GE (1980) Carbon-13 NMR spectra of cellulose polymorphs. J Am Chem Soc 102:3249–3251.  https://doi.org/10.1021/ja00529a063 CrossRefGoogle Scholar
  2. Aulin C, Netrval J, Wågberg L, Lindström T (2010) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6:3298–3305.  https://doi.org/10.1039/c001939a CrossRefGoogle Scholar
  3. Carpenter AW, de Lannoy CF, Wiesner MR (2015) Cellulose nanomaterials in water treatment technologies. Environ Sci Technol 49:5277–5287.  https://doi.org/10.1021/es506351r CrossRefGoogle Scholar
  4. Cervin NT, Aulin C, Larsson PT, Wågberg L (2011) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410.  https://doi.org/10.1007/s10570-011-9629-5 CrossRefGoogle Scholar
  5. Chaudhary JP, Vadodariya N, Nataraj SK, Meena R (2015) Chitosan-based aerogel membrane for robust oil-in-water emulsion separation. ACS Appl Mater Interfaces 7:24957–24962.  https://doi.org/10.1021/acsami.5b08705 CrossRefGoogle Scholar
  6. Chen ZH, Deng SB, Wei HR, Wang B, Huang J, Yu G (2013) Polyethylenimine-impregnated resin for high CO2 adsorption: an efficient adsorbent for CO2 capture from simulated flue gas and ambient air. ACS Appl Mater Interfaces 5:6937–6945.  https://doi.org/10.1021/am400661b CrossRefGoogle Scholar
  7. Chen W, Huang Y-X, Li D-B, Yu H-Q, Yan L (2014) Preparation of a macroporous flexible three dimensional graphene sponge using an ice-template as the anode material for microbial fuel cells. RSC Adv 4:21619–21624.  https://doi.org/10.1039/c4ra00914b CrossRefGoogle Scholar
  8. De France JK, Hoare T, Cranston DE (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631.  https://doi.org/10.1021/acs.chemmater.7b00531 CrossRefGoogle Scholar
  9. Dong Z, Zhao J, Du JF, Li CC, Zhao L (2016) Radiation synthesis of spherical cellulose-based adsorbent for efficient adsorption and detoxification of Cr(VI). Radiat Phys Chem 126:68–74.  https://doi.org/10.1016/j.radphyschem.2016.05.013 CrossRefGoogle Scholar
  10. Duan G, Bagheri AR, Jiang S, Golenser J, Agarwal S, Greiner A (2017) Exploration of macroporous polymeric sponges as drug carriers. Biomacromol.  https://doi.org/10.1021/acs.biomac.7b00852 Google Scholar
  11. Dwivedi CP, Sahu JN, Mohanty CR, Mohan BR, Meikap BC (2008) Column performance of granular activated carbon packed bed for Pb(II) removal. J Hazard Mater 156:596–603.  https://doi.org/10.1016/j.jhazmat.2007.12.097 CrossRefGoogle Scholar
  12. Feng LZ, Yang XZ, Shi XZ, Tan XF, Peng R, Wang J, Liu Z (2013) Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. Small 9:1989–1997.  https://doi.org/10.1002/smll.201202538 CrossRefGoogle Scholar
  13. Gandhi N, Sirisha D, Sekhar KBC (2016) Adsorption of Fluoride (F) from aqueous solution by using pineapple (ananas comosus) peel and orange (citrus sinensis) peel powders. Int J Environ Biorem Biodegrad 4:55–67.  https://doi.org/10.12691/ijebb-4-2-4 Google Scholar
  14. Ge H, Huang HL, Xu M, Chen Q (2016) Cellulose/poly(ethylene imine) composites as efficient and reusable adsorbents for heavy metal ions. Cellulose 23:2527–2537.  https://doi.org/10.1007/s10570-016-0973-3 CrossRefGoogle Scholar
  15. Hayase G, Kanamori K, Abe K, Yano H, Maeno A, Kaji H, Nakanishi K (2014) Polymethylsilsesquioxane-cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability, and superhydrophobicity. ACS Appl Mater Interfaces 6:9466–9471.  https://doi.org/10.1021/am501822y CrossRefGoogle Scholar
  16. Heydari-Gorji A, Sayari A (2011) CO2 capture on polyethylenimine-impregnated hydrophobic mesoporous silica: experimental and kinetic modeling. Chem Eng J 173:72–79.  https://doi.org/10.1016/j.cej.2011.07.038 CrossRefGoogle Scholar
  17. Jiang F, Hsieh Y-L (2014a) Amphiphilic superabsorbent cellulose nanofibril aerogels. J Mater Chem A 2:6337–6342.  https://doi.org/10.1039/c4ta00743c CrossRefGoogle Scholar
  18. Jiang F, Hsieh Y-L (2014b) Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing–thawing. J Mater Chem A 2:350–359.  https://doi.org/10.1039/c3ta13629a CrossRefGoogle Scholar
  19. Kassab H, Maksoud M, Aguado S, Pera-TitusBele M, Albela B, Bonneviot L (2012) Polyethylenimine covalently grafted on mesostructured porous silica for CO2 capture. RSC Adv 2:2508–2516.  https://doi.org/10.1039/c2ra01007k/ CrossRefGoogle Scholar
  20. Kettunen M et al (2011) Photoswitchable superabsorbency based on nanocellulose aerogels. Adv Funct Mater 21:510–517.  https://doi.org/10.1002/adfm.201001431 CrossRefGoogle Scholar
  21. Li YQ, Zhu WB, Yu XG, Huang P, Fu SY, Hu N, Liao K (2016) Multifunctional wearable device based on flexible and conductive carbon sponge/polydimethylsiloxane composite. ACS Appl Mater Interfaces 8:33189–33196.  https://doi.org/10.1021/acsami.6b11196 CrossRefGoogle Scholar
  22. Li Y, Bi HY, Jin YS (2017) Facile preparation of rhamnolipid-layered double hydroxide nanocomposite for simultaneous adsorption of p-cresol and copper ions from water. Chem Eng J 308:78–88.  https://doi.org/10.1016/j.cej.2016.09.030 CrossRefGoogle Scholar
  23. Lu J, Askeland P, Drzal TL (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296.  https://doi.org/10.1016/j.polymer.2008.01.028 CrossRefGoogle Scholar
  24. Lv L, Zhang J, Yuan SJ, Huang LQ, Tang SW, Liang B, Pehkonen S (2016) Enhanced adsorption of Cu(II) ions on chitosan microspheres functionalized with polyethylenimine-conjugated poly(glycidyl methacrylate) brushes. RSC Adv 6:78136–78150.  https://doi.org/10.1039/c6ra16226f CrossRefGoogle Scholar
  25. Qiu WZ, Yang HC, Wan LS, Xu ZK (2015) Co-deposition of catechol/polyethyleneimine on porous membranes for efficient decolorization of dye water. J Mater Chem A 3:14438–14444.  https://doi.org/10.1039/c5ta02590g CrossRefGoogle Scholar
  26. Ruan C, Ai K, Li X, Lu L (2014) A superhydrophobic sponge with excellent absorbency and flame retardancy. Angew Chem Int Ed Engl 53:5556–5560.  https://doi.org/10.1002/anie.201400775 CrossRefGoogle Scholar
  27. Sai HZ, Fu R, Xing L, Xiang JH, Li ZY, Li F, Zhang T (2015) Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS Appl Mater Interfaces 7:7373–7381.  https://doi.org/10.1021/acsami.5b00846 CrossRefGoogle Scholar
  28. Sui N et al (2015) Polyethylenimine modified magnetic graphene oxide nanocomposites for Cu2+ removal. RSC Adv 5:746–752.  https://doi.org/10.1039/c4ra11669k CrossRefGoogle Scholar
  29. Sun XT, Yang LR, Xing HF, Zhao JM, Li XP, Huang YB, Liu HZ (2013) Synthesis of polyethylenimine-functionalized poly(glycidyl methacrylate) magnetic microspheres and their excellent Cr(VI) ion removal properties. Chem Eng J 234:338–345.  https://doi.org/10.1016/j.cej.2013.08.082 CrossRefGoogle Scholar
  30. Sun XT, Yang LR, Li Q, Liu ZN, Dong TT, Liu HZ (2015) Polyethylenimine-functionalized poly(vinyl alcohol) magnetic microspheres as a novel adsorbent for rapid removal of Cr(VI) from aqueous solution. Chem Eng J 262:101–108.  https://doi.org/10.1016/j.cej.2014.09.045 CrossRefGoogle Scholar
  31. Tsutsumi Y, Koga H, Qi ZD, Saito T, Isogai A (2014) Nanofibrillar chitin aerogels as renewable base catalysts. Biomacromol 15:4314–4319.  https://doi.org/10.1021/bm501320b CrossRefGoogle Scholar
  32. Vasiljević J et al (2015) Functionalization of cellulose fibres with DOPO-polysilsesquioxane flame retardant nanocoating. Cellulose 22:1893–1910.  https://doi.org/10.1007/s10570-015-0599-x CrossRefGoogle Scholar
  33. Wang C, Xiong Y, Fan BT, Yao QF, Wang HW, Jin CD, Sun QF (2016) Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, sound-absorption and thermal insulation. Sci Rep 6:32383.  https://doi.org/10.1038/srep32383 CrossRefGoogle Scholar
  34. Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M, Bergstrom L (2015) Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol 10:277–283.  https://doi.org/10.1038/nnano.2014.248 CrossRefGoogle Scholar
  35. Xu FJ, Cai QJ, Li YL, Kang ET, Neoh KG (2005) Covalent Immobilization of glucose oxidase on well-defined poly(glycidyl methacrylate)−Si(111) Hybrids from surface-initiated atom-transfer radical polymerization. Biomacromol 6:1012–1020.  https://doi.org/10.1021/bm0493178 CrossRefGoogle Scholar
  36. Yao XL, Yu WJ, Xu X, Chen F, Fu Q (2015) Amphiphilic, ultralight, and multifunctional graphene/nanofibrillated cellulose aerogel achieved by cation-induced gelation and chemical reduction. Nanoscale 7:3959–3964.  https://doi.org/10.1039/c4nr07402e CrossRefGoogle Scholar
  37. Yuvaraja G, Subbaiah VM, Krishnaiah A (2012) Caesalpinia bonducellaLeaf powder as biosorbent for Cu(II) removal from aqueous environment: kinetics and isotherms. Ind Eng Chem Res 51:11218–11225.  https://doi.org/10.1021/ie203039m CrossRefGoogle Scholar
  38. Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668.  https://doi.org/10.1021/cm5004164 CrossRefGoogle Scholar
  39. Zhang N, Zang GL, Shi C, Yu HQ, Sheng GP (2016a) A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI: preparation, characterization, and application for Cu(II) removal. J Hazard Mater 316:11–18.  https://doi.org/10.1016/j.jhazmat.2016.05.018 CrossRefGoogle Scholar
  40. Zhang XF, Wang YR, Zhao JQ, Xiao MJ, Zhang W, Lu CH (2016b) Mechanically strong and thermally responsive cellulose nanofibers/poly(N-isopropylacrylamide) composite aerogels. ACS Sustain Chem Eng 4:4321–4327.  https://doi.org/10.1021/acssuschemeng.6b00814 CrossRefGoogle Scholar
  41. Zhao J, Ren W, Cheng H-M (2012) Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. J Mater Chem 22:20197.  https://doi.org/10.1039/c2jm34128j CrossRefGoogle Scholar
  42. Zhao JQ, Lu CH, He X, Zhang XF, Zhang W, Zhang XM (2015a) Polyethylenimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery. ACS Appl Mater Interfaces 7:2607–2615.  https://doi.org/10.1021/am507601m CrossRefGoogle Scholar
  43. Zhao JQ, Zhang XF, He X, Xiao MJ, Zhang W, Lu CH (2015b) A super biosorbent from dendrimer poly(amidoamine)-grafted cellulose nanofibril aerogels for effective removal of Cr(VI). J Mater Chem A 3:14703–14711.  https://doi.org/10.1039/c5ta03089g CrossRefGoogle Scholar
  44. Zhao R, Li X, Sun B, Li Y, Li Y, Yang R, Wang C (2017) Branched polyethylenimine grafted electrospun polyacrylonitrile fiber membrane: a novel and effective adsorbent for Cr(VI) remediation in wastewater. J Mater Chem A 5:1133–1144.  https://doi.org/10.1039/c6ta09784g CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Huan Cheng
    • 1
  • Yingzhan Li
    • 1
  • Bijia Wang
    • 1
  • Zhiping Mao
    • 1
  • Hong Xu
    • 1
  • Linping Zhang
    • 1
  • Yi Zhong
    • 1
  • Xiaofeng Sui
    • 1
  1. 1.Key Lab of Science and Technology of Eco-textile, Ministry of EducationDonghua UniversityShanghaiPeople’s Republic of China

Personalised recommendations