Advertisement

Cellulose

, Volume 25, Issue 1, pp 429–437 | Cite as

Cellulose nanofibers/silk fibroin nanohybrid sponges with highly ordered and multi-scale hierarchical honeycomb structure

  • Kezheng Gao
  • Yaqing Guo
  • Qingyuan Niu
  • Lifeng Han
  • Linsen Zhang
  • Yong Zhang
  • Lizhen Wang
Original Paper

Abstract

Highly ordered cellulose nanofibers/silk fibroin nanohybrid (CSN) honeycomb materials with multi-scale hierarchical architectures are successfully prepared from CSN hydrogel precursors using unidirectional freeze-drying technique. Cellulose nanofibers have an outstanding highly ordered honeycomb structure-directing function in composite hydrogel. However, silk fibroin does not have such function. Therefore, the properties of the CSN sponges can be effectively adjusted by simple changing the ratio of cellulose nanofibers to silk fibroin. When the content of silk fibroin reaches 50%, the CSN-50 sponge exhibits a nearly perfect highly ordered honeycomb structure with multi-scale hierarchical architectures. And the Brunauer–Emmett–Teller specific surface area is about 120 m2 g−1.

Keywords

Cellulose nanofibers Silk fibroin Nanohybrid sponges Biomimetic honeycomb structure 

Notes

Acknowledgments

Financial support was kindly supplied by grants from National Natural Science Foundation of China (Nos. 21501154, 21601162, and 21471135), Important Research Project at the University of Henan Province (16A430031), the Project of Henan Province Science and Technology Department (152102210352), Doctoral Research Foundation of Zhengzhou University of Light Industry (2014BSJJ059 and 2014BSJJ060), and Foundation of Zhengzhou University of Light Industry (2015XJJZ030 and 2015XJJY004).

Supplementary material

10570_2017_1545_MOESM1_ESM.docx (3.9 mb)
Supplementary material 1 (DOCX 4017 kb)

References

  1. Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84(3):975–983CrossRefGoogle Scholar
  2. Chen J, Zhuang A, Shao H, Hu X, Zhang Y (2017) Robust silk fibroin/bacterial cellulose nanoribbon composite scaffolds with radial lamellae and intercalation structure for bone regeneration. J Mater Chem B 5(20):3640–3650CrossRefGoogle Scholar
  3. Cote F, Russell BP, Deshpande VS, Fleck NA (2009) The through-thickness compressive strength of a composite sandwich panel with a hierarchical square honeycomb sandwich core. J Appl Mech T ASME.  https://doi.org/10.1115/1.3086436 Google Scholar
  4. Deville S (2008) Freeze-casting of porous ceramics: a review of current achievements and issues. Adv Eng Mater 10(3):155–169CrossRefGoogle Scholar
  5. Deville S, Saiz E, Nalla RK, Tomsia AP (2006) Freezing as a path to build complex composites. Science 311(5760):515–518CrossRefGoogle Scholar
  6. Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52(8):1263–1334CrossRefGoogle Scholar
  7. Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isogai A (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84(1):579–583CrossRefGoogle Scholar
  8. Gao K, Shao Z, Li J, Wang X, Peng X, Wang W, Wang F (2013a) Cellulose nanofiber–graphene all solid-state flexible supercapacitors. J Mater Chem A 1(1):63–67CrossRefGoogle Scholar
  9. Gao K, Shao Z, Wang X, Zhang Y, Wang W, Wang F (2013b) Cellulose nanofibers/multi-walled carbon nanotube nanohybrid aerogel for all-solid-state flexible supercapacitors. RSC Adv 3(35):15058–15064CrossRefGoogle Scholar
  10. Habibi MK, Lu Y (2014) Crack propagation in Bamboo’s hierarchical cellular structure. Sci Rep.  https://doi.org/10.1038/srep05598 Google Scholar
  11. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85CrossRefGoogle Scholar
  12. Kim KN, Chun J, Chae SA, Ahn CW, Kim IW, Kim S-W, Wang ZL, Baik JM (2015) Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles. Nano Energy 14:87–94CrossRefGoogle Scholar
  13. Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15(3):425–433CrossRefGoogle Scholar
  14. Lee JM, Kim JH, Lee OJ, Park CH (2013) The fixation effect of a silk fibroin–bacterial cellulose composite plate in segmental defects of the zygomatic arch an experimental study. JAMA Otolaryngol 139(6):629–635Google Scholar
  15. Li X-G, Wu LY, Huang MR, Shao H-L, Hu X-C (2008) Conformational transition and liquid crystalline state of regenerated silk fibroin in water. Biopolymers 89(6):497–505CrossRefGoogle Scholar
  16. Li WL, Lu K, Walz JY (2012) Freeze casting of porous materials: review of critical factors in microstructure evolution. Int Mater Rev 57(1):37–60CrossRefGoogle Scholar
  17. Lin N, Cao L, Huang Q, Wang C, Wang Y, Zhou J, Liu X-Y (2016) Functionalization of silk fibroin materials at mesoscale. Adv Funct Mater 26(48):8885–8902CrossRefGoogle Scholar
  18. Matsubara EY, Lala SM, Rosolen JM (2010) Lithium storage into carbonaceous materials obtained from sugarcane bagasse. J Braz Chem Soc 21(10):1877–1884CrossRefGoogle Scholar
  19. Montanari S, Rountani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38(5):1665–1671CrossRefGoogle Scholar
  20. Niu QY, Guo YQ, Gao KZ, Shao ZQ (2016) Polypyrrole/cellulose nanofiber aerogel as a supercapacitor electrode material. RSC Adv 6(110):109143–109149CrossRefGoogle Scholar
  21. Ochi A, Hossain KS, Magoshi J, Nemoto N (2002) Rheology and dynamic light scattering of silk fibroin solution extracted from the middle division of Bombyx mori silkworm. Biomacromol 3(6):1187–1196CrossRefGoogle Scholar
  22. Okita Y, Saito T, Isogai A (2009) TEMPO-mediated oxidation of softwood thermomechanical pulp. Holzforschung 63(5):529–535CrossRefGoogle Scholar
  23. Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromol 11(6):1696–1700CrossRefGoogle Scholar
  24. Oliveira Barud HG, Barud HDS, Cavicchioli M, do Amaral TS, de Oliveira Junior OB, Santos DM, de Oliveira Almeida Petersen AL, Celes F, Borges VM, de Oliveira CI, de Oliveira PF, Furtado RA, Tavares DC, Ribeiro SJL (2015) Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym 128:41–51CrossRefGoogle Scholar
  25. Pan Z-Z, Nishihara H, Iwamura S, Sekiguchi T, Sato A, Isogai A, Kang F, Kyotani T, Yang Q-H (2016) Cellulose nanofiber as a distinct structure-directing agent for xylem-like microhoneycomb monoliths by unidirectional freeze-drying. ACS Nano 10(12):10689–10697CrossRefGoogle Scholar
  26. Qin DC, Zhang F, Dong SY, Zhao YZ, Xu GY, Zhang XG (2016) Analogous graphite carbon sheets derived from corn stalks as high performance sodium-ion battery anodes. RSC Adv 6(108):106218–106224CrossRefGoogle Scholar
  27. Qiu L, Liu JZ, Chang SLY, Wu Y, Li D (2012) Biomimetic superelastic graphene-based cellular monoliths. Nat Commun.  https://doi.org/10.1038/ncomms2251 Google Scholar
  28. Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol 7(6):1687–1691CrossRefGoogle Scholar
  29. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8(8):2485–2491CrossRefGoogle Scholar
  30. Saito T, Hirota M, Tamura N, Isogai A (2010) Oxidation of bleached wood pulp by TEMPO/NaClO/NaClO2 system: effect of the oxidation conditions on carboxylate content and degree of polymerization. J Wood Sci 56(3):227–232CrossRefGoogle Scholar
  31. Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7(19):8804–8809CrossRefGoogle Scholar
  32. Schoof H, Apel J, Heschel I, Rau G (2001) Control of pore structure and size in freeze-dried collagen sponges. J Biomed Mater Res 58(4):352–357CrossRefGoogle Scholar
  33. Si Y, Wang X, Yan C, Yang L, Yu J, Ding B (2016) Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv Mater 28(43):9512–9518CrossRefGoogle Scholar
  34. Song L, Li L, Gao X, Zhao J, Lu T, Liu Z (2015) A facile synthesis of a uniform constitution of three-dimensionally ordered macroporous TiO2-carbon nanocomposites with hierarchical pores for lithium ion batteries. J Mater Chem A 3(13):6862–6872CrossRefGoogle Scholar
  35. Taylor CM, Smith CW, Miller W, Evans KE (2011) The effects of hierarchy on the in-plane elastic properties of honeycombs. Int J Solids Struct 48(9):1330–1339CrossRefGoogle Scholar
  36. Terry AE, Knight DP, Porter D, Vollrath F (2004) PH induced changes in the rheology of silk fibroin solution from the middle division of Bombyx mori silkworm. Biomacromol 5(3):768–772CrossRefGoogle Scholar
  37. Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M, Bergstrom L (2015) Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol 10(3):277–283CrossRefGoogle Scholar
  38. Yun YS, Cho SY, Shim J, Kim BH, Chang S-J, Baek SJ, Huh YS, Tak Y, Park YW, Park S, Jin H-J (2013) Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv Mater 25(14):1993–1998CrossRefGoogle Scholar
  39. Zhang F, Lu Q, Ming J, Dou H, Liu Z, Zuo B, Qin M, Li F, Kaplan DL, Zhang X (2014) Silk dissolution and regeneration at the nanofibril scale. J Mater Chem B 2(24):3879–3885CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.State Laboratory of Surface and Interface Science and Technology, School of Material and Chemical EngineeringZhengzhou University of Light IndustryZhengzhouChina

Personalised recommendations