, Volume 25, Issue 1, pp 417–427 | Cite as

Nanofibrous alginate membrane coated with cellulose nanowhiskers for water purification

  • T. C. Mokhena
  • N. V. Jacobs
  • A. S. Luyt
Original Paper


The aim of this study was to develop a filtration membrane based on two-layered nanoscale alginate nanofibres reinforced with maize cellulose nanowhiskers (diameter between 3 and 12 nm). Reinforcing of the membrane with cellulose nanowhiskers improved the mechanical properties of the membrane. The membrane was capable of completely removing water contaminants (10–100 nm nanoparticles) by size exclusion and oil/water retention higher than 99%. The rejection of chromium was found to increase with an increase in the feed solution pH. The rejection percentage for chromium (Cr(VI)) at a pH of 11 was found to be 80%, which shows that the membrane can be applied for short-term waste-water treatment and/or domestic water purification.


Electrospun alginate nanofibres Maize cellulose nanowhiskers Oil/water retention Chromium Water purification 



The authors would like to thank the Professional Development Programme of the Department of Science and Technology–National Research Foundation (DST-NRF) of South Africa for their financial support.


  1. Barhate RS, Ramakrishna S (2007) Nanofibrous filtering media: filtration problems and solutions from tiny materials. J Memb Sci 296:1–8. CrossRefGoogle Scholar
  2. Bjorge D et al (2009) Performance assessment of electrospun nanofibers for filter applications. Desalination 249:942–948. CrossRefGoogle Scholar
  3. Bonino CA, Efimenko K, Jeong SI, Krebs MD, Alsberg E, Khan SA (2012) Three-dimensional electrospun alginate nanofiber mats via tailored charge repulsions. Small 8:1928–1936. CrossRefGoogle Scholar
  4. Cao X, Huang M, Ding B, Yu J, Sun G (2013) Robust polyacrylonitrile nanofibrous membrane reinforced with jute cellulose nanowhiskers for water purification. Desalination 316:120–126. CrossRefGoogle Scholar
  5. Desai K, Kit K, Li J, Davidson PM, Zivanovic S, Meyer H (2009) Nanofibrous chitosan non-wovens for filtration applications. Polymer 50:3661–3669. CrossRefGoogle Scholar
  6. Ge J, Zhang J, Wang F, Li Z, Yu J, Ding B (2017) Superhydrophilic and underwater superoleophobic nanofibrous membrane with hierarchical structured skin for effective oil-in-water emulsion separation. J Mater Chem A 5:497–502. CrossRefGoogle Scholar
  7. Gopal R, Kaur S, Ma Z, Chan C, Ramakrishna S, Matsuura T (2006) Electrospun nanofibrous filtration membrane. J Memb Sci 281:581–586. CrossRefGoogle Scholar
  8. Gopal R, Kaur S, Feng CY, Chan C, Ramakrishna S, Tabe S, Matsuura T (2007) Electrospun nanofibrous polysulfone membranes as pre-filters: particulate removal. J Memb Sci 289:210–219. CrossRefGoogle Scholar
  9. Hafiane A, Lemordant D, Dhahbi M (2000) Removal of hexavalent chromium by nanofiltration. Desalination 130:305–312. CrossRefGoogle Scholar
  10. Haider S, Park S-Y (2009) Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu (II) and Pb(II) ions from an aqueous solution. J Memb Sci 328:90–96. CrossRefGoogle Scholar
  11. Kaur S, Rana D, Matsuura T, Sundarrajan S, Ramakrishna S (2012a) Preparation and characterization of surface modified electrospun membranes for higher filtration flux. J Memb Sci 390:235–242. CrossRefGoogle Scholar
  12. Kaur S, Sundarrajan S, Rana D, Matsuura T, Ramakrishna S (2012b) Influence of electrospun fiber size on the separation efficiency of thin film nanofiltration composite membrane. J Memb Sci 392:101–111. CrossRefGoogle Scholar
  13. Li X, Wu X, He G, Sun J, Xiao W, Tan Y (2014) Microspheroidization treatment of macroporous TiO2 to enhance its recycling and prevent membrane fouling of photocatalysis-membrane system. Chem Eng J 251:58–68. CrossRefGoogle Scholar
  14. Lu J-W, Zhu Y-L, Guo Z-X, Hu P, Yu J (2006) Electrospinning of sodium alginate with poly(ethylene oxide). Polymer 47:8026–8031. CrossRefGoogle Scholar
  15. Luo C, Tian Z, Yang B, Zhang L, Yan S (2013) Manganese dioxide/iron oxide/acid oxidized multi-walled carbon nanotube magnetic nanocomposite for enhanced hexavalent chromium removal. Chem Eng J 234:256–265. CrossRefGoogle Scholar
  16. Ma H, Burger C, Hsiao BS, Chu B (2011) Ultrafine polysaccharide nanofibrous membranes for water purification. Biomacromol 12:970–976. CrossRefGoogle Scholar
  17. Ma H, Burger C, Hsiao BS, Chu B (2012) Nanofibrous microfiltration membrane based on cellulose nanowhiskers. Biomacromol 13:180–186. CrossRefGoogle Scholar
  18. Mokhena TC, Luyt AS (2014) Investigation of polyethylene/sisal whiskers nanocomposites prepared under different conditions. Polym Compos 35:2221–2233. CrossRefGoogle Scholar
  19. Mokhena TC, Jacobs V, Luyt AS (2015) A review on electrospun bio-based polymers for water treatment. Express Polym Lett 9:839–880. CrossRefGoogle Scholar
  20. Moon S, Ryu BY, Choi J, Jo B, Farris RJ (2009) The morphology and mechanical properties of sodium alginate based electrospun poly(ethylene oxide) nanofibers. Polym Eng Sci 49:52–59. CrossRefGoogle Scholar
  21. Mtibe A, Linganiso LZ, Mathew AP, Oksman K, John MJ, Anandjiwala RD (2015) A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohydr Polym 118:1–8. CrossRefGoogle Scholar
  22. Muthukrishnan M, Guha B (2008) Effect of pH on rejection of hexavalent chromium by nanofiltration. Desalination 219:171–178. CrossRefGoogle Scholar
  23. Nie H, He A, Zheng J, Xu S, Li J, Han CC (2008) Effects of chain conformation and entanglement on the electrospinning of pure alginate. Biomacromol 9:1362–1365. CrossRefGoogle Scholar
  24. Patrício PS de O, Pereira FV, dos Santos MC, de Souza PP, Roa JP, Orefice RL (2013) Increasing the elongation at break of polyhydroxybutyrate biopolymer: effect of cellulose nanowhiskers on mechanical and thermal properties. J Appl Polym Sci 127:3613–3621. CrossRefGoogle Scholar
  25. Pradhan J, Das SN, Thakur RS (1999) Adsorption of hexavalent chromium from aqueous solution by using activated red mud. J Colloid Interface Sci 217:137–141. CrossRefGoogle Scholar
  26. Saeed K, Haider S, Oh T-J, Park S-Y (2008) Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. J Memb Sci 322:400–405. CrossRefGoogle Scholar
  27. Sharma PR, Joshi R, Sharma SK, Hsiao BS (2017) A simple approach to prepare carboxycellulose nanofibers from untreated biomass. Biomacromol 18:2333–2342. CrossRefGoogle Scholar
  28. Taha AA, Y-n Wu, Wang H, Li F (2012) Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr(VI) ion removal from aqueous solution. J Environ Manage 112:10–16. CrossRefGoogle Scholar
  29. Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 1:205–221. CrossRefGoogle Scholar
  30. Tian Y et al (2011) Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment. Carbohydr Polym 83:743–748. CrossRefGoogle Scholar
  31. Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226. CrossRefGoogle Scholar
  32. Wang X, Chen X, Yoon K, Fang D, Hsiao BS, Chu B (2005) High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating. Environ Sci Technol 39:7684–7691. CrossRefGoogle Scholar
  33. Wang X, Fang D, Yoon K, Hsiao BS, Chu B (2006) High performance ultrafiltration composite membranes based on poly(vinyl alcohol) hydrogel coating on crosslinked nanofibrous poly(vinyl alcohol) scaffold. J Memb Sci 278:261–268. CrossRefGoogle Scholar
  34. Wang R, Liu Y, Li B, Hsiao BS, Chu B (2012) Electrospun nanofibrous membranes for high flux microfiltration. J Memb Sci 392:167–174. CrossRefGoogle Scholar
  35. Wang R et al (2013) Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. J Memb Sci 446:376–382. CrossRefGoogle Scholar
  36. Wang L, Pan K, Li L, Cao B (2014a) Surface hydrophilicity and structure of hydrophilic modified PVDF membrane by nonsolvent induced phase separation and their effect on oil/water separation performance. Ind Eng Chem Res 53:6401–6408. CrossRefGoogle Scholar
  37. Wang Z, Ma H, Hsiao BS, Chu B (2014b) Nanofibrous ultrafiltration membranes containing cross-linked poly(ethylene glycol) and cellulose nanofiber composite barrier layer. Polymer 55:366–372. CrossRefGoogle Scholar
  38. Yoon K, Kim K, Wang X, Fang D, Hsiao BS, Chu B (2006) High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 47:2434–2441. CrossRefGoogle Scholar
  39. Yu L, Han M, He F (2017) A review of treating oily wastewater. Arab J Chem 10:S1913–S1922. CrossRefGoogle Scholar
  40. Zhan Y et al (2015) Construction of lysozyme exfoliated rectorite-based electrospun nanofibrous membranes for bacterial inhibition. J Appl Polym Sci 132:1–10. CrossRefGoogle Scholar
  41. Zhang Y, Cui P, Du T, Shan L, Wang Y (2009) Development of a sulfated Y-doped nonstoichiometric zirconia/polysulfone composite membrane for treatment of wastewater containing oil. Sep Purif Technol 70:153–159. CrossRefGoogle Scholar
  42. Zhang J et al (2015) Antimicrobial activity and cytotoxicity of nanofibrous mats immobilized with polysaccharides-rectorite based nanogels. Colloids Surf B 133:370–377. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.CSIR Materials Science and Manufacturing, Polymers and CompositesPort ElizabethSouth Africa
  2. 2.Department of ChemistryUniversity of the Free State (Qwaqwa Campus)PhuthaditjhabaSouth Africa
  3. 3.Department of ChemistryNelson Mandela Metropolitan UniversityPort ElizabethSouth Africa
  4. 4.Center for Advanced MaterialsQatar UniversityDohaQatar

Personalised recommendations