Cellulose

, Volume 25, Issue 1, pp 259–268 | Cite as

Water resistant nanopapers prepared by lactic acid modified cellulose nanofibers

  • Jatin Sethi
  • Muhammad Farooq
  • Sunanda Sain
  • Mohini Sain
  • Juho Antti Sirviö
  • Mirja Illikainen
  • Kristiina Oksman
Original Paper
  • 370 Downloads

Abstract

The current work reports a novel, completely water based approach to prepare the water resistant modified cellulose nanopapers. Lactic acid in aqueous medium was attached on cellulose nanofibers surface with the aid of ultra-sonication and later oligomerized (polymerized) by compression molding under high temperature and pressure, to obtain the modified nanopapers with enhanced mechanical properties. The modified nanopapers showed an increase of 32% in the elastic modulus and 30% in the yield strength over reference nanopapers. Additionally, the modified nanopaper was hydrophobic in nature and had superior storage modulus under moist conditions. The storage modulus of wet modified nanopaper was three times (2.4 GPa) compared to the reference nanopapers (0.8 GPa) after 1 h immersion in water. Finally, the thermal stability of the modified nanopaper was also higher than reference nanopaper. The material reported is 100% bio-based.

Keywords

Cellulose nanofibers Lactic acid Water resistant nanopaper Mechanical properties 

Notes

Acknowledgments

The authors acknowledge the financial support of the TEKES FiDiPro Program. Authors would also like to thank Dr. Petteri Piltonen for his valuable feedback during the writing of this paper.

Supplementary material

10570_2017_1540_MOESM1_ESM.docx (103 kb)
Supplementary material 1 (DOCX 102 kb)

References

  1. Agustin MB, Nakatsubo F, Yano H (2016) Products of low-temperature pyrolysis of nanocellulose esters and implications for the mechanism of thermal stabilization. Cellulose 23:2887–2903.  https://doi.org/10.1007/s10570-016-1004-0 CrossRefGoogle Scholar
  2. Ahtee M, Hattula T, Mangs J, Paakkari T (1983) An X-ray diffraction method for determination of crystallinity in wood pulp. Pap Ja Puu 65:475–480Google Scholar
  3. Ballard CC, Broge EC, Iler RK et al (1961) Esterification of the surface of amorphous silica. J Phys Chem 65:20–25.  https://doi.org/10.1021/j100819a007 CrossRefGoogle Scholar
  4. Benítez AJ, Torres-Rendon J, Poutanen M, Walther A (2013) Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils. Biomacromol 14:4497–4506. https://doi.org/10.1021/bm401451m CrossRefGoogle Scholar
  5. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896.  https://doi.org/10.1007/s10570-013-0030-4 CrossRefGoogle Scholar
  6. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542.  https://doi.org/10.1039/c3cs60204d CrossRefGoogle Scholar
  7. Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824.  https://doi.org/10.1002/app.26946 CrossRefGoogle Scholar
  8. Kobayashi S, Uyama H, Suda S, Namekawa S (1997) Dehydration polymerization in aqueous medium catalyzed by lipase. Chem Lett 26:105CrossRefGoogle Scholar
  9. Lee K-Y, Aitomäki Y, Berglund LA et al (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27.  https://doi.org/10.1016/j.compscitech.2014.08.032 CrossRefGoogle Scholar
  10. Lönnberg H, Zhou Q, Brumer H III, Teeri TT, Malmström E, Hult A (2006) Grafting of cellulose fibers with poly(E-caprolactone) and Poly(l-lactic acid) via ring-opening polymerization. Biomacromol 7(7):2178–2185. https://doi.org/10.1021/bm060178z CrossRefGoogle Scholar
  11. Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10.  https://doi.org/10.1186/1754-6834-3-10 CrossRefGoogle Scholar
  12. Peltzer M, Pei A, Zhou Q et al (2014) Surface modification of cellulose nanocrystals by grafting with poly(lactic acid). Polym Int 63:1056–1062.  https://doi.org/10.1002/pi.4610 CrossRefGoogle Scholar
  13. Przybysz P, Dubowik M, Kucner MA et al (2016) Contribution of hydrogen bonds to paper strength properties. PLoS ONE 11:e0155809CrossRefGoogle Scholar
  14. Sehaqui H, Ezekiel Mushi N, Morimune S et al (2012) Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl Mater Interfaces 4:1043–1049.  https://doi.org/10.1021/am2016766 CrossRefGoogle Scholar
  15. Sehaqui H, Zimmermann T, Tingaut P (2014) Hydrophobic cellulose nanopaper through a mild esterification procedure. Cellulose 21:367–382.  https://doi.org/10.1007/s10570-013-0110-5 CrossRefGoogle Scholar
  16. Suslick KS (2000) Sonochemistry. In: Kirk-Othmer encyclopedia of chemical technology. John Wiley & Sons, New York.  https://doi.org/10.1002/0471238961.1915141519211912.a01
  17. Tanaka H, Kurihashi T (2003) Synthesis of polyesters by emulsion polycondensation reaction in water. Polym J 35:359–363.  https://doi.org/10.1295/polymj.35.359 CrossRefGoogle Scholar
  18. Teramoto Y, Yoshioka M, Shiraishi N, Nishio Y (2002) Plasticization of cellulose diacetate by graft copolymerization of ε-caprolactone and lactic acid. J Appl Polym Sci 84:2621–2628.  https://doi.org/10.1002/app.10430 CrossRefGoogle Scholar
  19. Tingaut P, Zimmermann T, Sèbe G (2012) Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. J Mater Chem 22:20105.  https://doi.org/10.1039/c2jm32956e CrossRefGoogle Scholar
  20. Tischer PCSF, Sierakowski MR, Westfahl H, Tischer CA (2010) Nanostructural reorganization of bacterial cellulose by ultrasonic treatment. Biomacromol 11:1217–1224.  https://doi.org/10.1021/bm901383a CrossRefGoogle Scholar
  21. Tjeerdsma BF, Militz H (2005) Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz als Roh—und Werkst 63:102–111.  https://doi.org/10.1007/s00107-004-0532-8 CrossRefGoogle Scholar
  22. Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, part 1: process optimization. J Appl Polym Sci 113:1270–1275.  https://doi.org/10.1002/app.30072 CrossRefGoogle Scholar
  23. Yang J, Winnik MA, Ylitalo D, Devoe RJ (1996) Polyurethane-polyacrylate interpenetrating networks. 1. Preparation and morphology. Macromolecules 9297:7047–7054.  https://doi.org/10.1021/ma9601373 CrossRefGoogle Scholar
  24. Yoo DK, Kim D, Lee DS (2006) Synthesis of lactide from oligomeric PLA: effects of temperature, pressure, and catalyst. Macromol Res 14:510–516.  https://doi.org/10.1007/BF03218717 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Jatin Sethi
    • 1
  • Muhammad Farooq
    • 1
  • Sunanda Sain
    • 1
  • Mohini Sain
    • 2
    • 3
  • Juho Antti Sirviö
    • 1
  • Mirja Illikainen
    • 1
  • Kristiina Oksman
    • 1
    • 2
    • 3
  1. 1.Fibre and Particle Engineering Research UnitUniversity of OuluOuluFinland
  2. 2.Division of Materials ScienceLuleå University of TechnologyLuleåSweden
  3. 3.Centre for Biocomposites and Biomaterials ProcessingUniversity of TorontoTorontoCanada

Personalised recommendations