Cellulose

, Volume 25, Issue 1, pp 537–547 | Cite as

Modification of cellulose thin films with lysine moieties: a promising approach to achieve antifouling performance

  • Thomas Elschner
  • Matej Bračič
  • Tamilselvan Mohan
  • Rupert Kargl
  • Karin Stana Kleinschek
Original Paper
  • 133 Downloads

Abstract

Thin films of trimethylsilyl cellulose are obtained by spin coating and regenerated to cellulose. The surface is activated with N,N′-carbonyldiimidazole and aminolysis with lysine is carried out in aqueous solution to yield a cellulose lysine carbamate film. The surface is analytically characterized by ATR-IR spectroscopy, zetapotential measurements, contact angle measurements, and atomic force microscopy. The amount of functional groups is determined by pH potentiometric titration as well as the ninhydrin test and is in the range of 25 pmolcm−2. Adsorption of bovine serum albumine (BSA) and fibrinogen on the cellulose film and the cellulose lysine carbamate surface is studied at different pH values by quartz crystal microbalance with dissipation monitoring (QCM-D). The adsorption of BSA is significantly reduced by modification with lysine. At physiological pH value (7.4) the adsorption of fibrinogen is even six times lower (1.0 mgm−2) compared to the pure cellulose surface. Thus, cellulose thin films with lysine moieties are promising candidates for hemo-compatible antifouling surfaces in the field of blood contacting devices.

Keywords

Thin films Cellulose lysine carbamate Protein adsorption Fibrinogen BSA 

Notes

Acknowledgments

The financial support of the German Research Foundation (DFG, Research Fellowship [Grant Number EL843/1-1]) is gratefully acknowledged. The authors thank Ana Bratuša and Tanja Kos for their experimental assistance.

References

  1. Alila S, Ferraria AM, do Rego AMB, Boufi S (2009) Controlled surface modification of cellulose fibers by amino derivatives using N,N′-carbonyldiimidazole as activator. Carbohydr Polym 77(3):553–562.  https://doi.org/10.1016/j.carbpol.2009.01.028 CrossRefGoogle Scholar
  2. Bellmann C, Caspari A, Albrecht V, Doan TTL, Mäder E, Luxbacher T, Kohl R (2005) Electrokinetic properties of natural fibres. Colloids Surf A 267(1–3):19–23.  https://doi.org/10.1016/j.colsurfa.2005.06.033 CrossRefGoogle Scholar
  3. Berglin M, Pinori E, Sellborn A, Andersson M, Hulander M, Elwing H (2009) Fibrinogen adsorption and conformational change on model polymers: novel aspects of mutual molecular rearrangement. Langmuir 25(10):5602–5608.  https://doi.org/10.1021/la803686m CrossRefGoogle Scholar
  4. Boufi S, Vilar MR, Parra V, Ferraria AM, do Rego AMB (2008) Grafting of porphyrins on cellulose nanometric films. Langmuir 24(14):7309–7315.  https://doi.org/10.1021/la800786s CrossRefGoogle Scholar
  5. Chen SF, Li LY, Zhao C, Zheng J (2010) Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer 51(23):5283–5293.  https://doi.org/10.1016/j.polymer.2010.08.022 CrossRefGoogle Scholar
  6. Curotto E, Aros F (1993) Quantitative determination of chitosan and the percentage of free amino groups. Anal Biochem 211(2):240–241.  https://doi.org/10.1006/abio.1993.1263 CrossRefGoogle Scholar
  7. Edwards JV, Batiste SL, Gibbins EM, Goheen SC (1999) Synthesis and activity of NH2- and COOH-terminal elastase recognition sequences on cotton. J Pept Res 54(6):536–543.  https://doi.org/10.1034/j.1399-3011.1999.00134.x CrossRefGoogle Scholar
  8. Edwards JV, Prevost N, Sethumadhavan K, Ullah A, Condon B (2013) Peptide conjugated cellulose nanocrystals with sensitive human neutrophil elastase sensor activity. Cellulose 20(3):1223–1235.  https://doi.org/10.1007/s10570-013-9901-y CrossRefGoogle Scholar
  9. Elschner T, Reishofer D, Kargl R, Griesser T, Heinze T, Stana-Kleinschek K (2016) Reactive cellulose-based thin films—a concept for multifunctional polysaccharide surfaces. RSC Adv 6(76):72,378–72,385 10.1039/c6ra14227cCrossRefGoogle Scholar
  10. Fujii S, Kido M, Sato M, Higaki Y, Hirai T, Ohta N, Kojio K, Takahara A (2015) pH-Responsive and selective protein adsorption on an amino acid-based zwitterionic polymer surface. Polym Chem 6(39):7053–7059.  https://doi.org/10.1039/c5py00783f CrossRefGoogle Scholar
  11. Gericke M, Doliška A, Stana J, Liebert T, Heinze T, Stana-Kleinschek K (2011) Semi-synthetic polysaccharide sulfates as anticoagulant coatings for pet, 1-cellulose sulfate. Macromol Biosci 11(4):549–556.  https://doi.org/10.1002/mabi.201000419 CrossRefGoogle Scholar
  12. Indest T, Laine J, Kleinschek KS, Zemljič LF (2010) Adsorption of human serum albumin (HSA) on modified PET films monitored by QCM-D, XPS and AFM. Colloids Surf A 360(1–3):210–219.  https://doi.org/10.1016/j.colsurfa.2010.03.003 CrossRefGoogle Scholar
  13. Jedvert K, Elschner T, Heinze T (2017) Adsorption studies of amino cellulose on cellulosics. Macromol Mater Eng 302(7):1700,022.  https://doi.org/10.1002/mame.201700022 CrossRefGoogle Scholar
  14. Kumari S, Chauhan GS (2014) New cellulose-lysine schiff-base-based sensor-adsorbent for mercury ions. ACS Appl Mater Interfaces 6(8):5908–5917.  https://doi.org/10.1021/am500820n CrossRefGoogle Scholar
  15. Li WC, Liu QS, Liu LY (2014) Amino acid-based zwitterionic polymers: antifouling properties and low cytotoxicity. J Biomater Sci Polym Ed 25(14–15):1730–1742.  https://doi.org/10.1080/09205063.2014.948332 CrossRefGoogle Scholar
  16. Liu QS, Singh A, Liu LY (2013) Amino acid-based zwitterionic poly(serine methacrylate) as an antifouling material. Biomacromolecules 14(1):226–231.  https://doi.org/10.1021/bm301646y CrossRefGoogle Scholar
  17. Lord MS, Whitelock JM, Simmons A, Williams RL, Milthorpe BK (2014) Fibrinogen adsorption and platelet adhesion to silica surfaces with stochastic nanotopography. Biointerphases 9(4):041,002.  https://doi.org/10.1116/1.4900993 CrossRefGoogle Scholar
  18. Mohan T, Kargl R, Doliška A, Vesel A, Köstler S, Ribitsch V, Stana-Kleinschek K (2011) Wettability and surface composition of partly and fully regenerated cellulose thin films from trimethylsilyl cellulose. J Colloid Interface Sci 358(2):604–610.  https://doi.org/10.1016/j.jcis.2011.03.022 CrossRefGoogle Scholar
  19. Mohan T, Kargl R, Doliška A, Ehmann HMA, Ribitsch V, Stana-Kleinschek K (2013a) Enzymatic digestion of partially and fully regenerated cellulose model films from trimethylsilyl cellulose. Carbohydr Polym 93(1):191–198.  https://doi.org/10.1016/j.carbpol.2012.02.033 CrossRefGoogle Scholar
  20. Mohan T, Zarth CSP, Doliška A, Kargl R, Griesser T, Spirk S, Heinze T, Stana-Kleinschek K (2013b) Interactions of a cationic cellulose derivative with an ultrathin cellulose support. Carbohydr Polym 92(2):1046–1053.  https://doi.org/10.1016/j.carbpol.2012.10.026 CrossRefGoogle Scholar
  21. Mohan T, Findenig G, Hollbacher S, Cerny C, Ristic T, Kargl R, Spirk S, Maver U, Stana-Kleinschek K, Ribitsch V (2014) Interaction and enrichment of protein on cationic polysaccharide surfaces. Colloids Surf 123:533–B 541.  https://doi.org/10.1016/j.colsurfb.2014.09.053 CrossRefGoogle Scholar
  22. Mohan T, Niegelhell K, Zarth CSP, Kargl R, Kostler S, Ribitsch V, Heinze T, Spirk S, Stana-Kleinschek K (2014b) Triggering protein adsorption on tailored cationic cellulose surfaces. Biomacromolecules 15(11):3931–3941.  https://doi.org/10.1021/bm500997s CrossRefGoogle Scholar
  23. Mohan T, Kargl R, Tradt KE, Kulterer MR, Bračič M, Hribernik S, Stana-Kleinschek K, Ribitsch V (2015) Antifouling coating of cellulose acetate thin films with polysaccharide multilayers. Carbohydr Polym 116:149–158.  https://doi.org/10.1016/j.carbpol.2014.04.068 CrossRefGoogle Scholar
  24. Prochazkova S, Varum KM, Ostgaard K (1999) Quantitative determination of chitosans by ninhydrin. Carbohydr Polym 38(2):115–122.  https://doi.org/10.1016/S0144-8617(98)00108-8 CrossRefGoogle Scholar
  25. Qin DJ, Zhang DL, Shao ZQ, Wang JQ, Mu KG, Liu YH, Zhao LB (2016) Short-chain amino acids functionalized cellulose nanofibers composite ultrafiltration membrane with enhanced properties. RSC Adv.  https://doi.org/10.1039/c6ra14696a Google Scholar
  26. Reischl M, Köstler S, Kellner G, Stana-Kleinschek K, Ribitsch V (2008) Oscillating streaming potential measurement system for macroscopic surfaces. Rev Sci Instrum 79(11):113,902.  https://doi.org/10.1063/1.3020699 CrossRefGoogle Scholar
  27. Ristic T, Mohan T, Kargl R, Hribernik S, Doliška A, Stana-Kleinschek K, Fras L (2014) A study on the interaction of cationized chitosan with cellulose surfaces. Cellulose 21(4):2315–2325.  https://doi.org/10.1007/s10570-014-0267-6 CrossRefGoogle Scholar
  28. Rosen JE, Gu FX (2011) Surface functionalization of silica nanoparticles with cysteine: a low-fouling zwitterionic surface. Langmuir 27(17):10,507–10,513.  https://doi.org/10.1021/la201940r CrossRefGoogle Scholar
  29. Rowen JW, Blaine RL (1947) Sorption of nitrogen and water vapor on textile fibers. Ind Eng Chem 39(12):1659–1663.  https://doi.org/10.1021/ie50456a029 CrossRefGoogle Scholar
  30. Schaub M, Wenz G, Wegner G, Stein A, Klemm D (1993) Ultrathin films of cellulose on silicon-wafers. Adv Mater 5(12):919–922.  https://doi.org/10.1002/adma.19930051209 CrossRefGoogle Scholar
  31. Shi Q, Su YL, Chen WJ, Peng JM, Nie LY, Zhang L, Jiang ZY (2011) Grafting short-chain amino acids onto membrane surfaces to resist protein fouling. J Membr Sci 366(1–2):398–404.  https://doi.org/10.1016/j.memsci.2010.10.032 CrossRefGoogle Scholar
  32. Shiraishi K, Ohnishi T, Sugiyama K (1998) Preparation of poly(methyl methacrylate) microspheres modified with amino acid moieties. Macromol Chem Phys 199(9):2023–2028.  https://doi.org/10.1002/macp.1998.021990934 CrossRefGoogle Scholar
  33. Vatele JM (2004) Prenyl carbamates: preparation and deprotection. Tetrahedron 60(19):4251–4260.  https://doi.org/10.1016/j.tet.2004.03.028 CrossRefGoogle Scholar
  34. Wasilewska M, Adamczyk Z, Jachimska B (2009) Structure of fibrinogen in electrolyte solutions derived from dynamic light scattering (dls) and viscosity measurements. Langmuir 25(6):3698–3704.  https://doi.org/10.1021/la803662a CrossRefGoogle Scholar
  35. Wertz CF, Santore MM (2002) Fibrinogen adsorption on hydrophilic and hydrophobic surfaces: geometrical and energetic aspects of interfacial relaxations. Langmuir 18(3):706–715.  https://doi.org/10.1021/la011075z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Thomas Elschner
    • 1
  • Matej Bračič
    • 1
  • Tamilselvan Mohan
    • 1
    • 2
  • Rupert Kargl
    • 1
  • Karin Stana Kleinschek
    • 1
  1. 1.Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical EngineeringUniversity of MariborMariborSlovenia
  2. 2.Institute of ChemistryUniversity of GrazGrazAustria

Personalised recommendations