Skip to main content

Advertisement

Log in

Effect of preparation process of microfibrillated cellulose-reinforced polypropylene upon dispersion and mechanical properties

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Microfibrillated cellulose (MFC)-reinforced polypropylene (PP) was prepared via two engineering approaches: disintegration of the pulp by a bead mill followed by a melt-compounding process with PP (B-MFC-reinforced PP); and disintegration of the pulp mixed with PP by a twin screw extruder followed by a melt-compounding process (T-MFC-reinforced PP). The effects that the engineering process and the microfibrillation of the pulp had upon the dispersion and mechanical properties were investigated through tensile tests, rheological analysis and X-ray computed tomography. The bead-milling method enabled a uniform microfibrillation of the pulp to under 100 nm, which corresponded to a surface area of 133–146 m2/g for the pulp, found by the Brunauer–Emmett–Teller (BET) analysis. The T-MFC-reinforced PP with 30 wt% MFC content exhibited a tensile modulus of 5.3 GPa and a strength of 85 MPa, whereas the B-MFC-reinforced PP composites with the same content of MFC exhibited values of 4.1 GPa and 59.6 MPa, respectively. Rheological analysis revealed that the complex viscosity and storage modulus at 170 °C of T-MFC-reinforced PP with 30 wt% MFC content are 5–7 and 5–8 times higher than that of B-MFC-reinforced PP, respectively. This indicated that T-MFC was more dispersed in the PP than B-MFC. Therefore, T-MFC produced a more rigid interconnected network in the matrix during the melting state than B-MFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe K (2016) Nanofibrillation of dried pulp in NaOH solutions using bead milling. Cellulose 23(2):1–5. doi:10.1007/s10570-016-0891-4

    Article  Google Scholar 

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibres with a uniform width of 15 nm from wood. Biomacromolecules 8(10):3276–3278. doi:10.1021/bm700624p

    Article  CAS  Google Scholar 

  • Agarwal UP, Sabo R, Reiner RS, Clemons CM, Rudie AW (2012) Spatially resolved characterization of cellulose nanocrystal—polypropylene composite by confocal raman microscopy. Appl Spectrosc 66(7):750–756. doi:10.1366/11-06563

    Article  CAS  Google Scholar 

  • Aitomäki Y, Oksman K (2014) Reinforcing efficiency of nanocellulose in polymers. React Funct Polym 85:151–156. doi:10.1016/j.reactfunctpolym.2014.08.010

    Article  Google Scholar 

  • Bagheriasl D, Carreau PJ, Riedl B (2015) Properties of polypropylene and polypropylene/poly(ethylene-co-vinyl alcohol) blend/CNC nanocomposites. Compos Sci Technol 117(29):357–363. doi:10.1016/j.compscitech.2015.07.012

    Article  CAS  Google Scholar 

  • Bagheriasl D, Carreau PJ, Riedl B, Dubois C, Hamad WY (2016) Shear rheology of polylactide (PLA)–cellulose nanocrystal (CNC) nanocomposites. Cellulose 23(3):1885–1897. doi:10.1007/s10570-016-0914-1

    Article  CAS  Google Scholar 

  • Bahar E, Ucar N, Onen A, Wang Y, Oksüz M, Ayaz O, Ucar M, Demir A (2012) Thermal and mechanical properties of polypropylene nanocomposite materials reinforced with cellulose nano whiskers. J Appl Polym Sci 125(4):2882–2889. doi:10.1002/app.36445

    Article  CAS  Google Scholar 

  • Ben Azouz K, Ramires EC, Van den Fonteyne W, El Kissi N, Dufresne A (2011) Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1(1):236–240. doi:10.1021/mz2001737

    Article  Google Scholar 

  • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2):171–180. doi:10.1007/s10570-006-9061-4

    Article  CAS  Google Scholar 

  • Brunauer S, Emmett PH, Edward Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319. doi:10.1021/ja01269a023

    Article  CAS  Google Scholar 

  • Cassagnau P (2013) Linear viscoelasticity and dynamics of suspensions and molten polymers filled with nanoparticles of different aspect ratios. Polymer 54(18):4762–4775. doi:10.1016/j.polymer.2013.06.012

    Article  CAS  Google Scholar 

  • Ching YC, Ali ME, Abdullah LC, Choo KW, Kuan YC, Julaihi SJ, Chuah CH, Liou NS (2016) Rheological properties of cellulose nanocrystal-embedded polymer composites: a review. Cellulose 23(2):1011–1030. doi:10.1007/s10570-016-0868-3

    Article  CAS  Google Scholar 

  • Cox HL (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 3(3):72–79

    Article  Google Scholar 

  • Farahbakhsh N, Venditti RA, Jur JS (2014) Mechanical and thermal investigation of thermoplastic nanocomposite films fabricated using micro-and nano-sized fillers from recycled cotton T-shirts. Cellulose 21(4):2743–2755. doi:10.1007/s10570-014-0285-4

    Article  CAS  Google Scholar 

  • Favier V, Canova GR, Cavaillé JY, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6(5):351–355. doi:10.1002/pat.1995.220060514

    Article  CAS  Google Scholar 

  • Fu SY, Lauke B (1996) Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiber-reinforced polymers. Compos Sci Technol 56(10):1179–1190. doi:10.1016/S0266-3538(96)00072-3

    Article  CAS  Google Scholar 

  • Goffin AL, Raquez JM, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) Poly (ɛ-caprolactone) based nanocomposites reinforced by surface-grafted cellulose nanowhiskers via extrusion processing: morphology, rheology, and thermo-mechanical properties. Polymer 52(7):1532–1538. doi:10.1016/j.polymer.2011.02.004

    Article  CAS  Google Scholar 

  • Hassanabadi HM, Alemdar A, Rodrigue D (2015) Polypropylene reinforced with nanocrystalline cellulose: coupling agent optimization. J Appl Polym Sci 132(24):2882–2889. doi:10.1002/app.42438

    Google Scholar 

  • Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43(8):3434–3441. doi:10.1016/j.eurpolymj.2007.05.038

    Article  CAS  Google Scholar 

  • Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49(4):950–956. doi:10.1016/j.eurpolymj.2012.10.016

    Article  CAS  Google Scholar 

  • Ho TTT, Abe K, Zimmermann T, Yano H (2015) Nanofibrillation of pulp fibers by twin-screw extrusion. Cellulose 22(1):421–433. doi:10.1007/s10570-014-0518-6

    Article  CAS  Google Scholar 

  • Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10(9):2571–2576. doi:10.1021/bm900520n

    Article  CAS  Google Scholar 

  • Iwamoto S, Yamamoto S, Lee SH, Endo T (2014) Mechanical properties of polypropylene composites reinforced by surface-coated microfibrillated cellulose. Compos Part A Appl Sci 59:26–29. doi:10.1016/j.compositesa.2013.12.011

    Article  CAS  Google Scholar 

  • Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68(9):2103–2106. doi:10.1016/j.compscitech.2008.03.006

    Article  CAS  Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70(12):1742–1747. doi:10.1016/j.compscitech.2010.07.00

    Article  CAS  Google Scholar 

  • Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22(2):935–969. doi:10.1007/s10570-015-0551-0

    Article  CAS  Google Scholar 

  • Khalil HA, Bhat AH, Yusra AI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979. doi:10.1016/j.carbpol.2011.08.078

    Article  Google Scholar 

  • Khoshkava V, Kamal MR (2014) Effect of cellulose nanocrystals (CNC) particle morphology on dispersion and rheological and mechanical properties of polypropylene/CNC nanocomposites. ACS Appl Mater Interfaces 6(11):8146–8157. doi:10.1021/am500577e

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature based materials. Angew Chem Int Ed 50(24):5438–5466. doi:10.1002/anie.201001273

    Article  CAS  Google Scholar 

  • Krenchel H (1964) Fibre reinforcement. Alademisk Forlag, Copenhagen

    Google Scholar 

  • Lee KY, Aitomäki Y, Berglund LA, Oksman K, Bismarck A (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27. doi:10.1016/j.compscitech.2014.08.032

    Article  Google Scholar 

  • Lindström T, Aulin C (2014) Market and technical challenges and opportunities in the area of innovative new materials and composites based on nanocellulosics. Scand J Forest Res 29(4):345–351. doi:10.1080/02827581.2014.928365

    Article  Google Scholar 

  • Liu Y, Yu Z, Zhou S, Wu L (2006) De-agglomeration and dispersion of nano-TiO2 in an agitator bead mill. J Dispers Sci Technol 27(7):983–990. doi:10.1080/01932690600766975

    Article  CAS  Google Scholar 

  • Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaillé JY (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6(5):2732–2739. doi:10.1021/bm050222v

    Article  CAS  Google Scholar 

  • Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50(19):4552–4563. doi:10.1016/j.polymer.2009.07.038

    Article  Google Scholar 

  • Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262. doi:10.1007/s10570-013-0007-3

    Article  CAS  Google Scholar 

  • Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25(14):8280–8286. doi:10.1021/la900452a

    Article  CAS  Google Scholar 

  • Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37(20):7683–7687. doi:10.1021/ma049300h

    Article  CAS  Google Scholar 

  • Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos A 83:2–18. doi:10.1016/j.compositesa.2015.10.041

    Article  CAS  Google Scholar 

  • Olsson RT, Samir MA, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogués J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5(8):584–588. doi:10.1038/nnano.2010.155

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941. doi:10.1021/bm061215p

    Article  Google Scholar 

  • Page DH, El-Hosseiny F (1983) The mechanical properties of single wood pulp fibres. J Pulp Pap Sci 9:99–100

    Google Scholar 

  • Peng Y, Gallegos SA, Gardner DJ, Han Y, Cai Z (2014) Maleic anhydride polypropylene modified cellulose nanofibril polypropylene nanocomposites with enhanced impact strength. Polym Compos 37(3):782–793. doi:10.1002/pc.23235

    Article  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai Y (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491. doi:10.1021/bm0703970

    Article  CAS  Google Scholar 

  • Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2012) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14(1):248–253. doi:10.1021/bm301674e

    Article  Google Scholar 

  • Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57(165):651–660

    Article  CAS  Google Scholar 

  • Sato A, Kabusaki D, Okumura H, Nakatani T, Nakatsubo F, Yano H (2016) Surface modification of cellulose nanofibers with alkenyl succinic anhydride for high-density polyethylene reinforcement. Compos Part A 83:72–79. doi:10.1016/j.compositesa.2015.11.009

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794. doi:10.1177/004051755902901003

    Article  CAS  Google Scholar 

  • Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71(13):1593–1599. doi:10.1016/j.compscitech.2011.07.003

    Article  CAS  Google Scholar 

  • Semba T, Ito A, Kitagawa K, Nakatani T, Yano H, Sato A (2014) Thermoplastic composites of polyamide-12 reinforced by cellulose nanofibers with cationic surface modification. J Appl Polym Sci. doi:10.1002/app.40920

    Google Scholar 

  • Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69(7):1187–1192. doi:10.1016/j.compscitech.2009.02.022

    Article  CAS  Google Scholar 

  • Suzuki K, Okumura H, Kitagawa K, Sato S, Nakagaito AN, Yano H (2013) Development of continuous process enabling nanofibrillation of pulp and melt compounding. Cellulose 20(1):201–210. doi:10.1007/s10570-012-9843-9

    Article  CAS  Google Scholar 

  • Suzuki K, Sato A, Okumura H, Hashimoto T, Nakagaito AN, Yano H (2014) Novel high-strength, micro fibrillated cellulose-reinforced polypropylene composites using a cationic polymer as compatibilizer. Cellulose 21(1):507–518. doi:10.1007/s10570-013-0143-9

    Article  CAS  Google Scholar 

  • Suzuki K, Homma Y, Igarashi Y, Okumura H, Semba T, Nakatsubo H, Yano H (2016) Investigation of the mechanism and effectiveness of cationic polymer as a compatibilizer in microfibrillated cellulose-reinforced polyolefins. Cellulose 23(1):623–635. doi:10.1007/s10570-015-0845-2

    Article  CAS  Google Scholar 

  • Tanpichai S, Quero F, Nogi M, Yano H, Young RJ, Lindström T, Sampson WW, Eichhorn SJ (2012) Effective Young’s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromol 13(5):1340–1349. doi:10.1021/bm300042t

    Article  CAS  Google Scholar 

  • Tingaut P, Zimmermann T, Lopez-Suevos F (2009) Synthesis and characterization of bionanocomposites with tunable properties from poly (lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11(2):454–464. doi:10.1021/bm901186u

    Article  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  • Uetani K, Yano H (2010) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12(2):348–353. doi:10.1007/s10570-012-9745-x

    Article  Google Scholar 

  • Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24(3):784–795. doi:10.1021/la702481v

    Article  Google Scholar 

  • Wang Y, Forssberg E (2006) Production of carbonate and silica nano-particles in stirred bead milling. Int J Miner Process 81(1):1–14. doi:10.1016/j.minpro.2006.05.007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Humiaki Nakatsubo and Associate Professor Kentaro Abe of the Research Institute for Sustainable Humanosphere (RISH), Kyoto University, for helpful discussions. This study was supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan; the Oji Holdings Corporation; Nippon Paper Industries Co., Ltd.; Mitsubishi Chemical, Corporation; the DIC Corporation and Sumitomo Rubber Industries, Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhito Suzuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, K., Homma, Y., Igarashi, Y. et al. Effect of preparation process of microfibrillated cellulose-reinforced polypropylene upon dispersion and mechanical properties. Cellulose 24, 3789–3801 (2017). https://doi.org/10.1007/s10570-017-1355-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1355-1

Keywords

Navigation