, Volume 24, Issue 3, pp 1171–1197 | Cite as

Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review

Review Paper


Nanocellulose is a lightweight material with strong mechanical strength, inexpensive production costs and safe handling compared to synthetic nanoparticles. Thanks to the high specific surface area, broad possibility of surface modification and high mechanical strength, nanocellulose has emerged as a new class of biobased adsorbent with promising potential application in environmental remediation. Many classes of pollutants could be adsorbed by nanocellulose, including heavy metals, dissolved organic pollutants, dyes, oil and undesired effluents. The possibility for the regeneration of the nanocellulose adsorbent is another benefit driving attempts to fully exploit this new class of nanostructured biobased material. In this review, an update of the most relevant uses of nanocellulose as a new class of adsorbents for environmental remediation is outlined. An emphasis on the key advancement of surface modifications of nanocellulose to enhance the adsorption efficiency according to the pollutant class is highlighted.


Nanocellulose Adsorption Organic pollutants Heavy metal Dyes Oil Renewability 


  1. Abdelmouleh M, Boufi S, Belgacem MN, Duarte AP, Ben Salah A, Gandini A (2004) Modification of cellulosic fibres with functionalized silanes: development of surface properties. Int J Adhes Adhes 24:43–54CrossRefGoogle Scholar
  2. Abdul Khalil HPS, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665CrossRefGoogle Scholar
  3. Ahmad M, Ahmed S, Swami BL, Ikram S (2015) Adsorption of heavy metal ions: role of chitosan and cellulose: a review. Int J Pharm 2(6):280–289Google Scholar
  4. Al-Asheh S, Duvnjak Z (1997) Adsorption of metal ions by moss. Adv. Environ. Res 2:194–212Google Scholar
  5. Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112:5073–5091CrossRefGoogle Scholar
  6. Ali I, Gupta VK (2007) Advances in water treatment by adsorption technology. Nat Prot 1:2661–2667CrossRefGoogle Scholar
  7. Alila S, Boufi S (2009) Removal of organic pollutants from water by modified cellulose fibres. Ind Crops Prod 30:93–104CrossRefGoogle Scholar
  8. Alila S, Maatar W, Boufi S (2013) Cellulose based organogel as an adsorbent for dissolved organic compounds. Ind Crops Prod 49:33–42CrossRefGoogle Scholar
  9. Ambashta RD, Sillanpää M (2010) Water purification using magnetic assistance: a review. J Hazard Mater 180:38–49CrossRefGoogle Scholar
  10. Anirudhan TS, Deepa JR, Christa J (2016) Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of Cobalt(II) from nuclear industry wastewater samples. J Colloid Interface Sci 467:307–320CrossRefGoogle Scholar
  11. Aulin C, Netrval J, Wågberg L, Lindström T (2010) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6:3298–3305CrossRefGoogle Scholar
  12. Babel S, Dacera DM (2006) Heavy metal removal from contaminated sludge for land application: a review. Waste Manag 26:988–1004CrossRefGoogle Scholar
  13. Babich H, Devanas MA, Stotzky G (1985) The mediation of mutagenicity and clastogenicity of heavy metals by physicochemical factors. Environ Res 37:253–286CrossRefGoogle Scholar
  14. Bashkova S, Baker FS, Wu X, Armstrong TR, Schwartz V (2007) Activated carbon catalyst for selective oxidation of hydrogen sulphide: on the influence of pore structure surface characteristics and catalytically-active nitrogen. Carbon 45:1354–1363CrossRefGoogle Scholar
  15. Batmaz R, Mohammed N, Zaman M, Minhas G, Berry RM, Tam KC (2014) Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 21:1655–1665CrossRefGoogle Scholar
  16. Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983CrossRefGoogle Scholar
  17. Bhatnagar A, Sillanpä M (2010) Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment: a review. Chem Eng J 157:277–296CrossRefGoogle Scholar
  18. Bhatnagar A, Sillanpää M, Witek-Krowiak A (2015) Agricultural waste peels as versatile biomass for water purification—a review. Chem Eng J 270:244–271CrossRefGoogle Scholar
  19. Boufi S, Alila S (2011) Modified cellulose fibres as a biosorbent for the organic pollutants. Biopolymers: Biomed Environ App 483–524Google Scholar
  20. Burda C, Lou Y, Chen X, Samia ACS, Stout J, Gole JL (2003) Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett 3:1049–1051CrossRefGoogle Scholar
  21. Cai H, Sharma S, Liu W, Mu W, Liu W, Zhang X et al (2014) Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold. Biomacromolecules 15:2540–2547CrossRefGoogle Scholar
  22. Chaker A, Boufi S (2015) Cationic nanofibrillar cellulose with high antibacterial properties. Carbohydr Polym 131:224–232CrossRefGoogle Scholar
  23. Chan CH, Chia CH, Zakaria S, Sajab MS, Chin SX (2015) Cellulose nanofibrils: a rapid adsorbent for the removal of methylene blue. RSC Adv 5:18204–18212CrossRefGoogle Scholar
  24. Charerntanyarak L (1999) Heavy metals removal by chemical coagulation and precipitation. Water Sci Technol 39:135–138CrossRefGoogle Scholar
  25. Chen S, Zou Y, Yan Z, Shen W, Shi S, Zhang X et al (2009) Carboxymethylated-bacterial cellulose for copper and lead ion removal. J Hazard Mater 161:1355–1359CrossRefGoogle Scholar
  26. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 4:2997–3027CrossRefGoogle Scholar
  27. Doan HD, Lohi A, Dang VBH, Dang-Vu T (2008) Removal of Zn2+ and Ni2+ by adsorption in a fixed bed of wheat straw. Process Saf Environ Prot 86:259–267CrossRefGoogle Scholar
  28. Dwivedi AD, Sanandiya ND, Singh JP, Husnain SM, Chae KH, Hwang DS, Chang YS (2016) Tuning and characterizing nanocellulose interface for enhanced removal of dual-sorbate (AsV and CrVI) from water matrices. ACS Sustain Chem Eng. doi: 10.1021/acssuschemeng.6b01874 Google Scholar
  29. Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7797CrossRefGoogle Scholar
  30. Feng J, Nguyen ST, Fan Z, Duong HM (2015) Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem Eng J 270:168–175CrossRefGoogle Scholar
  31. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 3:407–418CrossRefGoogle Scholar
  32. Gama M, Gatenholm P, Klemm D (2012) Bacterial nanocellulose: a sophisticated multifunctional material. CRC Press, Boca Raton, p 304Google Scholar
  33. García-González CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels—promising biodegradable carriers for drug delivery systems: a review. Carbohydr Polym 86:1425–1438CrossRefGoogle Scholar
  34. Gebald C, Wurzbacher JA, Tingaut P, Zimmermann T, Steinfeld A (2011) Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ Sci Technol 45:9101–9108CrossRefGoogle Scholar
  35. Gündoğan R, Acemioğlu B, Alma MH (2004) Copper (II) adsorption from aqueous solution by herbaceous peat. J Colloid Interface Sci 269:303–309CrossRefGoogle Scholar
  36. Gupta VK, Saleh TA (2013) Sorption of pollutants by porous carbon, carbon nanotubes and fullerene—an overview. Environ Sci Pollut Res 20:2828–2843CrossRefGoogle Scholar
  37. Gupta VK, Carrott PJM, Ribeiro MML, Suhas C (2009) Low-cost adsorbents: growing approach to wastewater treatment: a review. Crit Rev Environ Sci Technol 39:783–842CrossRefGoogle Scholar
  38. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542CrossRefGoogle Scholar
  39. Haimer E, Wendland M, Schlufter K, Frankenfeld K, Miethe P, Potthast A et al (2010) Loading of bacterial cellulose aerogels with bioactive compounds by antisolvent precipitation with supercritical carbon dioxide. Macromol Symp 294:64–74CrossRefGoogle Scholar
  40. Hoepfner S, Ratke L, Milow B (2008) Synthesis and characterisation of nanofibrillar cellulose aerogels. Cellulose 15:121–129CrossRefGoogle Scholar
  41. Hokkanen S, Repo E, Sillanpä M (2013) Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chem Eng J 223:40–47CrossRefGoogle Scholar
  42. Hokkanen S, Repo E, Bhatnagar A, Tang WZ, Sillanpää M (2014a) Adsorption of hydrogen sulphide from aqueous solutions using modified nano/micro fibrillated cellulose. Environ Technol 35:2334–2346CrossRefGoogle Scholar
  43. Hokkanen S, Repo E, Suopajärvi T (2014b) Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose 21:1471–1487CrossRefGoogle Scholar
  44. Hokkanen S, Repo E, Lou S, Sillanpää M (2015) Removal of arsenic (V) by magnetic nanoparticle activated microfibrillated cellulose. Chem Eng J 260:886–894CrossRefGoogle Scholar
  45. Hokkanen S, Bhatnagar A, Sillanpää M (2016a) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91(15):156–173CrossRefGoogle Scholar
  46. Hokkanen S, Bhatnagar A, Repo E, Lou S, Sillanpä M (2016b) Calcium hydroxyapatite microfibrillated cellulose composite as a potential adsorbent for the removal of Cr(VI) from aqueous solution. Chem Eng J 283:445–452CrossRefGoogle Scholar
  47. Hongyang M, Benjamin S, Hsiao S, Benjamin C (2012) Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO2 2+ in water. ACS Macro Lett 1:213–216CrossRefGoogle Scholar
  48. Hu JS, Zhong LS, Song WG, Wan LJ (2008) Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal. Adv Mater 20:2977–2982CrossRefGoogle Scholar
  49. Huang L, Ou Z, Boving TB, Tyson J, Xing B (2009) Sorption of copper by chemically modified aspen wood fibers. Chemosphere 76:1056–1061CrossRefGoogle Scholar
  50. Huang Y, Zhu C, Yang J, Nie Y, Chen C, Sun D (2014) Recent advances in bacterial cellulose. Cellulose 21(1):1–30CrossRefGoogle Scholar
  51. Huisman JL, Schouten G, Schultz C (2006) Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy 83:106–113CrossRefGoogle Scholar
  52. Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135CrossRefGoogle Scholar
  53. Jiang F, Hsieh YL (2014) Amphiphilic superabsorbent cellulose nanofibril aerogels. J Mater Chem A 2:6337–6342CrossRefGoogle Scholar
  54. Jin H, Nishiyama Y, Wada M, Kuga S (2004) Nanofibrillar cellulose aerogels. Colloids Surf A Physicochem Eng Aspects 240:63–67CrossRefGoogle Scholar
  55. Jin H, Kettunen M, Laiho A, Pynnönen H, Paltakari J, Marmur A et al (2011) Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir 27:1930–1934CrossRefGoogle Scholar
  56. Jin L, Li W, Xu Q, Sun Q (2015) Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes. Cellulose 22:2443–2456CrossRefGoogle Scholar
  57. Jiuhui QU (2008) Research progress of novel adsorption processes in water purification: a review. J Environ Sci 20:1–13CrossRefGoogle Scholar
  58. Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292:5–31CrossRefGoogle Scholar
  59. Kang SY, Lee JU, Moon SH, Kim KW (2004) Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere 56:141–147CrossRefGoogle Scholar
  60. Kardam A, Raj KR, Srivastava S, Srivastava MM (2014) Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Technol Environ Policy 16:385–393CrossRefGoogle Scholar
  61. Karim Z, Mathew AP, Grahn M, Mouzon J, Oksman K (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr Polym 112:668–676CrossRefGoogle Scholar
  62. Karnitz OJ, Gurgel LVA, De Melo JCP, Botaro VR, Melo TMS, Gil RP et al (2007) Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Biores Technol 98:1291–1297CrossRefGoogle Scholar
  63. Keshavarzi N, Rad FM, Mace AK, Ansari F, Akhtar F, Nilsson U, Berglund LA, Bergström L (2015) Nanocellulose-zeolite composite films for odor elimination. ACS Appl Mater Interfaces 7(26):14254–14262CrossRefGoogle Scholar
  64. Kong S, Polprasert N (1995) Electrochemical precipitation of chromium (Cr6+) from an electroplating wastewater. Water Sci Technol 31:109–117Google Scholar
  65. Korhonen JT, Hiekkataipale P, Malm J, Karppinen M, Ikkala O, Ras HA (2011a) Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates. ACS 3(5):1967–1974Google Scholar
  66. Korhonen JT, Kettunen M, Ras RHA, Ikkala O (2011b) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3:1813–1816CrossRefGoogle Scholar
  67. Lalia BS, Guillen E, Arafat HA, Hashaikeh R (2014) Nanocrystalline cellulose reinforced PVDF-HFP membranes for membrane distillation application. Desalination 332:134–141CrossRefGoogle Scholar
  68. Lawrance GA (2013) Introduction to coordination chemistry. Wiley, New YorkGoogle Scholar
  69. Li X, Tang Y, Xuan Z, Liu Y, Luo F (2007) Study on the preparation of orange peel cellulose adsorbents and biosorption of Cd2+ from aqueous solution. Sep Purif Technol 55:69–75CrossRefGoogle Scholar
  70. Lien HL, Elliott DW, Sun YP, Zhang WX (2006) Recent Progress in Zero-Valent Iron Nanoparticles for Groundwater Remediation. J Environ Eng Manag 16:371–380Google Scholar
  71. Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274CrossRefGoogle Scholar
  72. Liu P, Sehaqui H, Tingaut P, Wichser A, Oksman K, Mathew AP (2014) Cellulose and chitin nanomaterials for capturing silver ions (Ag+) from water via surface adsorption. Cellulose 21:449–461CrossRefGoogle Scholar
  73. Liu P, Borrell PF, Bozi M, Kokol V, Oksman K, Mathew AP (2015) Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+and Fe3+ from industrial effluents. J Hazard Mater 294:177–185CrossRefGoogle Scholar
  74. Ma H, Hsiao BS, Chu B (2012) Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO2 2+ in water. ACS Macro Lett 1:213–216CrossRefGoogle Scholar
  75. Maatar W, Boufi S (2015) Poly (methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent. Carbohydr Polym 126:199–207CrossRefGoogle Scholar
  76. Mabayoje O, Seredych M, Bandosz TJ (2013) Enhanced adsorption of hydrogen sulfide on mixed zinc/cobalt hydroxides: effect of morphology and an increased number of surface hydroxyl groups. J Colloid Interface Sci 405:218–225CrossRefGoogle Scholar
  77. Mahfoudhi N, Boufi S (2016) Nanocellulose as a millennium material with enhancing adsorption capacities. In: Kalia S, Avérous L (eds) Biodegradable and biobased polymers for environmental and biomedical applications. Wiley, Hoboken. doi: 10.1002/9781119117360.ch10
  78. Meng Y, Young TM, Liu P, Contescu CI, Huang B, Wang S (2014) Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material. Cellulose 22:435–447CrossRefGoogle Scholar
  79. Nassar MY, Khataba M (2016) Cobalt ferrite nanoparticles via a template-free hydrothermal route as an efficient nano-adsorbent for potential textile dye removal. RSC Adv 6:79688–79705CrossRefGoogle Scholar
  80. Nata F, Sureshkumar M, Lee C (2011) One-pot preparation of amine rich magnetite/bacterial cellulose nanocomposite and its application for arsenate removal. RSC Adv 1:625–631CrossRefGoogle Scholar
  81. Natha BK, Chaliha C, Kalita E, Kalitaba MC (2016) Synthesis and characterization of ZnO/CeO2:nanocellulose:PANI bionanocomposite. A bimodal agent for arsenic adsorption and antibacterial action. Carbohydr Polym 148:397–405CrossRefGoogle Scholar
  82. Nemoto J, Saito T, Isogai A (2015) Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters. ACS Appl Mater Interfaces 7(35):19809–19815CrossRefGoogle Scholar
  83. Nguyen T, Roddick FA, Fan L (2012) Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures. Membranes 2:804–840CrossRefGoogle Scholar
  84. Pääkko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T et al (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499CrossRefGoogle Scholar
  85. Pasquali I, Bettini R (2008) Are pharmaceutics really going supercritical? Future perspectives in pharmaceutics contributions from younger scientists. Int J Pharm 364(2):176–187CrossRefGoogle Scholar
  86. Pei A, Butchos N, Berglunda LA, Zhou Q (2013) Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9:2047–2055CrossRefGoogle Scholar
  87. Rashed MN (2013) Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater. Organic Pollutants - Monitoring, Risk and Treatment, pp 167–194Google Scholar
  88. Reddad Z, Gerente C, Andres Y, Le Cloirec P (2002) Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environ Sci Technol 36:2067–2073CrossRefGoogle Scholar
  89. Rusli R, Eichhorn SJ (2008) Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Appl Phys Lett 93(3):033111-033113CrossRefGoogle Scholar
  90. Saito T, Isogai A (2004) TEMPO-Mediated Oxidation of Native Cellulose: the Effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5(5):1983–1989CrossRefGoogle Scholar
  91. Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanoparticle Res 7:331–342CrossRefGoogle Scholar
  92. Scherer GW, Smith DM (1995) Cavitation during drying of a gel. J Non Cryst Solids 189(3):197–211CrossRefGoogle Scholar
  93. Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71:1593–1599CrossRefGoogle Scholar
  94. Sehaqui H, Gálvez ME, Becatinni V, Ng YC, Steinfeld A, Zimmermann T et al (2014a) Fast and reversible direct CO2 capture from air onto all-polymer nanofibrillated cellulose polyethylenimine foams. Environ Sci Technol 49:3167–3174CrossRefGoogle Scholar
  95. Sehaqui H, Larraya UP, Liu P, Pfenninger N, Mathew AP, Zimmermann T et al (2014b) Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment. Cellulose 21:2831–2844CrossRefGoogle Scholar
  96. Sellergren B, Hall AJ (2012) Molecularly imprinted polymers. In: Supramolecular chemistry: from molecules to nanomaterialsGoogle Scholar
  97. Shen W, Chen S, Shi S, Li X, Zhang X, Hu W et al (2009) Adsorption of Cu(II) and Pb(II) onto diethylenetriamine bacterial cellulose. Carbohydr Polym 75:110–114CrossRefGoogle Scholar
  98. Singh K, Arora JK, Sinha TJM, Srivastava S (2014) Functionalization of nanocrystalline cellulose for decontamination of Cr(III) and Cr(VI) from aqueous system: computational modeling approach. Clean Technol Environ Policy 16:1179–1191CrossRefGoogle Scholar
  99. Sirviö JA, Hasa T, Leiviskä T, Liimatainen H, Hormi O (2016) Bisphosphonate nanocellulose in the removal of vanadium(V) from water. Cellulose 23:689–697CrossRefGoogle Scholar
  100. Smrckova D, Michalek J, Karpushkin E, Hobzova R, Miroslava M, Gatenholm P (2012) Methacrylate hydrogels reinforced with bacterial cellulose. Polym Int 61:1193–1201CrossRefGoogle Scholar
  101. Snyder A, Bo Z, Moon R, Rochet JC, Stanciu L (2013) Reusable photocatalytic titanium dioxide–cellulose nanofiber films. J Colloid Interface Sci 399:92–98CrossRefGoogle Scholar
  102. Srivastava S, Kardam A, Raj KR (2012) Nanotech reinforcement onto cellulosic fibers: green remediation of toxic metals. Int J Green Nanotech 4:46–53CrossRefGoogle Scholar
  103. Stephena M, Catherine N, Brendaa M, Andrew K, Leslie P, Corrinec G (2011) Oxolane-2,5-dione modified electrospun cellulose nanofibers for heavy metals adsorption. J Hazard Mater 192:922–927CrossRefGoogle Scholar
  104. Suman S, Kardam A, Gera M, Jain VK (2015) A novel reusable nanocomposite for complete removal of dyes, heavy metals and microbial load from water based on nanocellulose and silver nano-embedded pebbles. Environ Technol 36(6):5–8CrossRefGoogle Scholar
  105. Suopajärvi T, Liimatainen H, Hormi O, Niinimäki J (2013) Coagulation–flocculation treatment of municipal wastewater based on anionized nanocelluloses. Chem Eng J 231:59–67CrossRefGoogle Scholar
  106. Suopajärvi T, Liimatainen H, Karjalainen M, Upola H, Niinimäki J (2014) Lead adsorption with sulfonated wheat pulp nanocelluloses. J Water Process Eng 5:136–142CrossRefGoogle Scholar
  107. Svensson AL, Larsson PT, Alvarez GS, Wågberg L (2013) Preparation of dry ultra-porous cellulosic fibres: characterization and possible initial uses. Carbohydr Polym 92:75–83CrossRefGoogle Scholar
  108. Tagliabue M, Bellussi G, Broccia P, Carati A, Millini R, Pollesel P et al (2012) High-pressure hydrogen sulphide adsorption on silica–aluminas. Chem Eng J 210:398–403CrossRefGoogle Scholar
  109. Tanpichai S, Quero F, Nogi M, Yano H, Young RJ, Lindström T et al (2012) Effective Young’s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromolecules 13:1340–1349CrossRefGoogle Scholar
  110. Tarrés Q, Oliver-Ortega H, Llop M, Pèlach MA, Delgado-Aguilar M, Mutje P (2016) Effective and simple methodology to produce nanocellulosebased aerogels for selective oil removal. Cellulose 23(5):3077–3088CrossRefGoogle Scholar
  111. Vartiainen J, Pöhler T, Sirola S, Pylkkänen L, Alenius H, Hokkanen J et al (2011) Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose 18:775–786CrossRefGoogle Scholar
  112. Vipin AK, Fugetsu B, Sakata I, Isogai A, Endo M, Li M, Dresselhaus MS (2016) Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium. Sci Rep 6:37009CrossRefGoogle Scholar
  113. Wan C, Lu Y, Jiao Y, Jin C, Sun Q, Li J (2015) Ultralightandhydrophobic nanofibrillated cellulose aerogels from coconut shell with ultrastrong adsorption properties. J Appl Polym Sci 132:42037Google Scholar
  114. Wang R, Guan S, Sato A, Wang X, Wang Z, Yang R, Hsiao BS, Chu B (2013) Nanofibrousmicrofiltration membranes capable of removing bacteria, viruses and heavy metal ions. JMembr Sci 2446:376–382CrossRefGoogle Scholar
  115. Wang Y, Yadav S, Heinlein T, Konjik V, Breitzke H, Buntkowsky G et al (2014) Ultra-light nanocomposite aerogels of bacterial cellulose and reduced graphene oxide for specific absorption and separation of organic liquids. RSC Adv 4:21553–21558CrossRefGoogle Scholar
  116. Xua X, Yang YQ, Xing YY, Yang JF, Wanga SF (2013) Properties of novel polyvinyl alcohol/cellulose nanocrystals/silver nanoparticles blend membranes. Carbohydr Polym 98:1573–1577CrossRefGoogle Scholar
  117. Yang J, Yu J, Fan J, Sun D, Tanga W, Yanga X (2011) Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application. J Hazard Mater 189:377–383CrossRefGoogle Scholar
  118. Yang G et al (2014a) Cd (II) removal from aqueous solution by adsorption on α-ketoglutaric acid-modified magnetic chitosan. Appl Surf Sci 292:710–716CrossRefGoogle Scholar
  119. Yang R, Aubrecht KB, Ma HY, Wang R, Grubbs RB, Hsiao BS et al (2014b) Thiol-modified cellulose nanofibrous composite membranes for chromium(VI) and lead(II) adsorption. Polymer 55:1167–1176CrossRefGoogle Scholar
  120. Yao C, Wang F, Cai Z, Wang X (2016) Aldehyde-functionalized porous nanocellulose for effective removal of heavy metal ions from aqueous solutions. RSC Adv 6:92648–92654CrossRefGoogle Scholar
  121. Yin CY, Aroua MK, Daud WM (2007) Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Sep Purif Technol 52:403–415CrossRefGoogle Scholar
  122. Yu B, Zhang Y, Shukla A, Shukla SS, Dorris KL (2000) The removal of heavy metal from aqueous solutions by sawdust adsorption-removal of copper. J Hazard Mater 80:33–42CrossRefGoogle Scholar
  123. Yu X, Tong S, Ge M, Wu L, Zuo J, Cao C et al (2013) Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J Environ Sci 25:933–943CrossRefGoogle Scholar
  124. Yu HY, Zhang DZ, Lu FF, Yao J (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain Chem Eng 4(5):2632–2643CrossRefGoogle Scholar
  125. Zhang Y, Nypelö T, Salas C, Arboleda J, Hoeger IC, Rojas OJ (2013) Cellulose nanofibrils: from strong materials to bioactive surfaces. J Renew Mater 3:195–211CrossRefGoogle Scholar
  126. Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668CrossRefGoogle Scholar
  127. Zhou ZY, Tian N, Li JT, Broadwell I, Sun SG (2011) Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem Soc Rev 40:4167–4185CrossRefGoogle Scholar
  128. Zhou Y, Fu S, Zhang L, Zhana H, Levit MV (2014) Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II). Carbohydr Polym 101:75–82CrossRefGoogle Scholar
  129. Zhu H, Jia S, Wan T, Jia Y, Yang H, Li J et al (2011) Biosynthesis of spherical Fe3O4/bacterial cellulose nanocomposites as adsorbents for heavy metal ions. Carbohydr Polym 86:1558–1564CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Faculty of Science - LMSEUniversity of SfaxSfaxTunisia

Personalised recommendations