Advertisement

Cellulose

, Volume 24, Issue 2, pp 705–716 | Cite as

Effects of liquid crystalline and shear alignment on the optical properties of cellulose nanocrystal films

  • Alexander D. Haywood
  • Virginia A. Davis
Original Paper

Abstract

Rheo-optics, microspectrophotometry, and optical contrast measurements were used to gain new insights into the interrelated effects of liquid crystalline phase behavior, flow alignment, and microstructural relaxation on cellulose nanocrystal (CNC) films’ alignment and optical properties. Optical contrast measurements were found to be an effective and facile way of determining changes in anisotropy directly from cross-polarized microscopy images. This method was used to continuously measure microstructural relaxation after the cessation of shear as well as the anisotropy of dried CNC films. Aqueous liquid crystalline CNC dispersions showed greater alignment after shear than isotropic or biphasic dispersions. However, CNC gels exhibited lower alignment at equivalent shear rates. The combination of greater initial alignment and slower relaxation of sheared liquid crystalline dispersions resulted in the most optically anisotropic films. Depending on their thickness, the CNC films were optically transparent in the visible regime or exhibited tunable interference colors. The results of this work highlight the tunability of CNC dispersion processing for producing color filters and other optical materials with controlled properties.

Keywords

Cellulose nanocrystal Rheo-optics Liquid crystal Thin film Aligned films 

Notes

Acknowledgments

The authors would like to acknowledge the National Science Foundation Grants CMMI-1131633 and DGE-1069004.

Complinace with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

10570_2016_1150_MOESM1_ESM.docx (90.4 mb)
Supplementary material 1 (DOCX 92559 kb)

References

  1. Abitbol T, Kloser E, Gray DG (2013) Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20(2):785–794CrossRefGoogle Scholar
  2. Ao G, Nepal D, Aono M, Davis VA (2011) Cholesteric and nematic liquid crystalline phase behavior of double-stranded DNA stabilized single-walled carbon nanotube dispersions. ACS Nano 5(2):1450–1458CrossRefGoogle Scholar
  3. Beck S, Bouchard J, Chauve G, Berry R (2013) Controlled production of patterns in iridescent solid films of cellulose nanocrystals. Cellulose 20(3):1401–1411CrossRefGoogle Scholar
  4. Beck S, Méthot M, Bouchard J (2015) General procedure for determining cellulose nanocrystal sulfate half-ester content by conductometric titration. Cellulose 22(1):101–116CrossRefGoogle Scholar
  5. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054CrossRefGoogle Scholar
  6. Davis VA (2011) Liquid crystalline assembly of nanocylinders. J Mater Res 26(02):140–153CrossRefGoogle Scholar
  7. Davis VA, Parra-Vasquez ANG, Green MJ, Rai PK, Behabtu N, Prieto V, Booker RD, Schmidt J, Kesselman E, Zhou W (2009) True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat Nanotechnol 4(12):830–834CrossRefGoogle Scholar
  8. Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32CrossRefGoogle Scholar
  9. Duggal R, Hussain F, Pasquali M (2006) Self-assembly of single-walled carbon nanotubes into a sheet by drop drying. Adv Mater 18(1):29–34CrossRefGoogle Scholar
  10. Geng Y, Almeida PL, Feio GM, Figueirinhas JL, Godinho MH (2013) Water-based cellulose liquid crystal system investigated by Rheo-NMR. Macromolecules 46(11):4296–4302CrossRefGoogle Scholar
  11. Green MJ, Parra-Vasquez ANG, Behabtu N, Pasquali M (2009) Modeling the phase behavior of polydisperse rigid rods with attractive interactions with applications to single-walled carbon nanotubes in superacids. J Chem Phys 131(8):041401CrossRefGoogle Scholar
  12. Henrique MA, Silvério HA, Flauzino Neto WP, Pasquini D (2013) Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. J Environ Manag 121:202–209CrossRefGoogle Scholar
  13. Hoeger I, Rojas OJ, Efimenko K, Velev OD, Kelley SS (2011) Ultrathin film coatings of aligned cellulose nanocrystals from a convective-shear assembly system and their surface mechanical properties. Soft Matter 7(5):1957–1967CrossRefGoogle Scholar
  14. Huang Y, Duan X, Wei Q, Lieber CM (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291(5504):630–633CrossRefGoogle Scholar
  15. Kim J, Peretti J, Lahlil K, Boilot JP, Gacoin T (2013) Optically anisotropic thin films by shear-oriented assembly of colloidal nanorods. Adv Mater 25(24):3295–3300CrossRefGoogle Scholar
  16. Kiss G (1979) Rheology and rheo-optics of concentrated solutions of helical polypeptides. UMass Amherst, AmherstGoogle Scholar
  17. Kiss G, Orrell T, Porter RS (1979) Rheology and rheo-optics of anisotropic poly-β-benzyl-aspartate gel. Rheol Acta 18(5):657–661CrossRefGoogle Scholar
  18. Lagerwall JP, Schütz C, Salajkova M, Noh J, Park JH, Scalia G, Bergström L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6(1):e80CrossRefGoogle Scholar
  19. Larson RG (1999) The structure and rheology of complex fluids, vol 33. Oxford University Press, New YorkGoogle Scholar
  20. Lavrentovich O, Kleman M (2001) Cholesteric liquid crystals: defects and topology. In: Kitzerow HS, Bahr C (eds) Chirality in liquid crystals. Springer, New York, pp 115–158Google Scholar
  21. Li J, Revol JF, Marchessault RH (1996) Rheological properties of aqueous suspensions of chitin crystallites. J Colloid Interface Sci 183(2):365–373CrossRefGoogle Scholar
  22. Li M-C, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3(5):821–832CrossRefGoogle Scholar
  23. Liu J-W, Liang H-W, Yu S-H (2012) Macroscopic-scale assembled nanowire thin films and their functionalities. Chem Rev 112(8):4770–4799CrossRefGoogle Scholar
  24. Luo Z, Song H, Feng X, Run M, Cui H, Wu L, Gao J, Wang Z (2013) Liquid crystalline phase behavior and sol–gel transition in aqueous halloysite nanotube dispersions. Langmuir 29(40):12358–12366CrossRefGoogle Scholar
  25. Marrucci G (1991) Rheology of Nematic Polymers. In: Ciferri A (ed) Liquid crystallinity in polymers: principles and fundamental properties. VCH Publishers, New York, pp 395–422Google Scholar
  26. Michel-Lévy M, Lacroix A (1888) Minéralogie sur nouveau gisemant de dumortiérite. CR Acad Sci Paris 106:1546–1548Google Scholar
  27. Montesi A, Peña AA, Pasquali M (2004) Vorticity alignment and negative normal stresses in sheared attractive emulsions. Phys Rev Lett 92(5):058303CrossRefGoogle Scholar
  28. Mu X, Gray DG (2015) Droplets of cellulose nanocrystal suspensions on drying give iridescent 3-D “coffee-stain” rings. Cellulose 22(2):1103–1107CrossRefGoogle Scholar
  29. Nepal D, Balasubramanian S, Simonian AL, Davis VA (2008) Strong antimicrobial coatings: single-walled carbon nanotubes armored with biopolymers. Nano Lett 8(7):1896–1901CrossRefGoogle Scholar
  30. Onogi S, Asada T (1980) Rheology and rheo-optics of polymer liquid crystals. In: Astarita G, Marrucci G, Nicolais L (eds) Rheology Vol 1: Principles. Springer, New York, pp 127–147Google Scholar
  31. Onogi Y, White JL, Fellers JF (1980) Rheo-optics of shear and elongational flow of liquid cystalline polymer solutions: hydroxypropyl cellulose/water and poly-p-phenylene terephthalamide/sulfuric acid. J Non-Newtonian Fluid Mech 7(2–3):121–151CrossRefGoogle Scholar
  32. Orts W, Godbout L, Marchessault R, Revol J-F (1998) Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small angle neutron scattering study. Macromolecules 31(17):5717–5725CrossRefGoogle Scholar
  33. Pan J, Hamad W, Straus SK (2010) Parameters affecting the chiral nematic phase of nanocrystalline cellulose films. Macromolecules 43(8):3851–3858CrossRefGoogle Scholar
  34. Park JH, Noh J, Schütz C, Salazar-Alvarez G, Scalia G, Bergström L, Lagerwall JP (2014) Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions. ChemPhysChem 15(7):1477–1484CrossRefGoogle Scholar
  35. Reising AB, Moon RJ, Youngblood JP (2013) Effect of particle alignment on mechanical properties of neat cellulose nanocrystal films. J Sci Technol For Prod Process 2:32–41Google Scholar
  36. Revol J-F, Bradford H, Giasson J, Marchessault R, Gray D (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172CrossRefGoogle Scholar
  37. Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2012) Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28(49):17124–17133CrossRefGoogle Scholar
  38. Singh KB, Bhosale LR, Tirumkudulu MS (2009) Cracking in drying colloidal films of flocculated dispersions. Langmuir 25(8):4284–4287CrossRefGoogle Scholar
  39. Stroobants A, Lekkerkerker HNW, Odijk T (1986) Effect of electrostatic interaction on the liquid-crystal phase-transition in solutions of rodlike polyelectrolytes. Macromolecules 19(8):2232–2238CrossRefGoogle Scholar
  40. Urena-Benavides EE, Ao G, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44(22):8990–8998CrossRefGoogle Scholar
  41. Walker L, Wagner N (1994) Rheology of region I flow in a lyotropic liquid-crystal polymer: the effects of defect texture. J Rheol 38(5):1525–1547CrossRefGoogle Scholar
  42. Wu Q, Meng Y, Wang S, Li Y, Fu S, Ma L, Harper D (2014) Rheological behavior of cellulose nanocrystal suspension: influence of concentration and aspect ratio. J Appl Polym Sci 131(15):4525(1)–4525(8)Google Scholar
  43. Xu T, Davis VA (2014) Liquid crystalline phase behavior of silica nanorods in dimethyl sulfoxide and water. Langmuir 30(16):4806–4813CrossRefGoogle Scholar
  44. Zhang Z, Wu Q, Song K, Ren S, Lei T, Zhang Q (2015) Using cellulose nanocrystals as a sustainable additive to enhance hydrophilicity, mechanical and thermal properties of poly(vinylidene fluoride)/poly(methyl methacrylate) blend. ACS Sustain Chem Eng 3(4):574–582CrossRefGoogle Scholar
  45. Zugenmaier P (2008) Cellulose crystalline cellulose and derivatives: characterization and structures. Springer, Berlin, pp 101–174Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Chemical EngineeringAuburn UniversityAuburnUSA

Personalised recommendations