Advertisement

Cellulose

, Volume 24, Issue 2, pp 835–849 | Cite as

A comparative study on lyocell-fabric based all-cellulose composite laminates produced by different processes

  • Bapan Adak
  • Samrat Mukhopadhyay
Original Paper

Abstract

Lyocell-fabric based all-cellulose composite (ACC) laminates were produced using a compression molding technique by four different routes using ionic liquid (1-butyl-3-methylimidazolium chloride) as solvent. Process I to Process III were used to produce cross-plied ACC laminates while unidirectional ACC laminates were produced by Process IV. The microstructures of the laminates were analyzed on the basis of SEM images and percentage void content. The relations between microstructure and mechanical properties of ACCs were studied on the basis of effect of dissolution time and different process techniques. The tensile and flexural properties of lyocell-ACCs manufactured through the present routes were also compared with conventional biocomposites. In all processes, longer dissolution times resulted in more reduction of internal void content as well as improved microstructure and properties. Compared to Process I, slightly better mechanical properties were achieved by Process II and Process III. An important improvement was observed in tensile and flexural properties for the unidirectional ACC produced using Process IV. The ACC-laminate prepared by Process III with 2 h dissolution time showed the highest inter-laminar adhesion strength (2.15 N/mm). The best tensile strength obtained was 102.6 MPa for the sample produced by Process IV with 1 h dissolution time. ACC-laminate prepared by Process IV with 2 h dissolution time showed the highest flexural strength, flexural modulus and Young’s modulus which were 178.3 MPa, 11 and 4.2 GPa, respectively. These mechanical properties are better than those of most conventional biocomposites.

Keywords

Cellulose All-cellulose composite laminate Lyocell fabric Mechanical properties Microstructure Process 

Notes

Acknowledgments

The Authors are very much thankful to Birla Cellulose (Gujrat, India) for supplying Lyocell fabric free of cost. The authors of this article are also grateful to Prof. B.L. Deopura, Department of Textile Technology, IIT Delhi for his valuable suggestions and technical assistance.

Supplementary material

10570_2016_1149_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 kb)

References

  1. Adak B, Mukhopadhyay S (2016a) Effect of the dissolution time on the structure and properties of lyocell-fabric-based all-cellulose composite laminates. J Appl Polym Sci. doi: 10.1002/app.43398 Google Scholar
  2. Adak B, Mukhopadhyay S (2016b) Effect of pressure on structure and properties of lyocell fabric based all-cellulose composite laminates. J Text Inst. doi: 10.1080/00405000.2016.1209827 Google Scholar
  3. Bao L, Chen Y, Zhou W, Wu Y, Huang Y (2011) Bamboo fibers@ poly (ethylene glycol)-reinforced poly (butylene succinate) biocomposites. J Appl Polym Sci 122:2456–2466. doi: 10.1002/app.34365 CrossRefGoogle Scholar
  4. Bondeson D, Syre P, Niska KO (2007) All cellulose nanocomposites produced by extrusion. J Biobased Mater Bioenergy 1:367–371. doi: 10.1166/jbmb.2007.011 CrossRefGoogle Scholar
  5. Bourban C, Karamuk E, De Fondaumiere MJ, Ruffieux K, Mayer J, Wintermantel E (1997) Processing and characterization of a new biodegradable composite made of a PHB/V matrix and regenerated cellulosic fibers. J Environ Polym Degrad 5:159–166. doi: 10.1007/BF02763659 Google Scholar
  6. Duchemin BJ, Mathew AP, Oksman K (2009a) All-cellulose composites by partial dissolution in the ionic liquid 1-butyl-3-methylimidazolium chloride. Compos A Appl Sci Manuf 40:2031–2037. doi: 10.1016/j.compositesa.2009.09.013 CrossRefGoogle Scholar
  7. Duchemin BJ, Newman RH, Staiger MP (2009b) Structure-property relationship of all-cellulose composites. Compos Sci Technol 69:1225–1230. doi: 10.1016/j.compscitech.2009.02.027 CrossRefGoogle Scholar
  8. Ferreira JAM, Capela C, Costa JD (2010) A study of the mechanical properties of natural fibre reinforced composites. Fiber Polym 11:1181–1186. doi: 10.1007/s12221-010-1181-7 CrossRefGoogle Scholar
  9. Ghaderi M, Mousavi M, Yousefi H, Labbafi M (2014) All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydr Polym 104:59–65. doi: 10.1016/j.carbpol.2014.01.013 CrossRefGoogle Scholar
  10. Gindl W, Keckes J (2005) All-cellulose nanocomposite. Polymer 46:10221–10225. doi: 10.1016/j.polymer.2005.08.040 CrossRefGoogle Scholar
  11. Gindl-Altmutter W, Keckes J, Plackner J, Liebner F, Englund K, Laborie MP (2012) All-cellulose composites prepared from flax and lyocell fibres compared to epoxy–matrix composites. Compos Sci Technol 72:1304–1309. doi: 10.1016/j.compscitech.2012.05.011 CrossRefGoogle Scholar
  12. Han D, Yan L (2010) Preparation of all-cellulose composite by selective dissolving of cellulose surface in PEG/NaOH aqueous solution. Carbohydr Polym 79:614–619. doi: 10.1016/j.carbpol.2009.09.008 CrossRefGoogle Scholar
  13. Huber T, Bickerton S, Müssig J, Pang S, Staiger MP (2012a) Solvent infusion processing of all-cellulose composite materials. Carbohydr Polym 90:730–733. doi: 10.1016/j.carbpol.2012.05.047 CrossRefGoogle Scholar
  14. Huber T, Müssig J, Curnow O, Pang S, Bickerton S, Staiger MP (2012b) A critical review of all-cellulose composites. J Mater Sci 47:1171–1186. doi: 10.1007/s10853-011-5774-3 CrossRefGoogle Scholar
  15. Huber T, Pang S, Staiger MP (2012c) All-cellulose composite laminates. Compos A Appl Sci Manuf 43:1738–1745. doi: 10.1016/j.compositesa.2012.04.017 CrossRefGoogle Scholar
  16. Huber T, Bickerton S, Müssig J, Pang S, Staiger MP (2013) Flexural and impact properties of all-cellulose composite laminates. Compos Sci Technol 88:92–98. doi: 10.1016/j.compscitech.2013.08.040 CrossRefGoogle Scholar
  17. Johnson RK, Zink-Sharp A, Renneckar SH, Glasser WG (2008) Mechanical properties of wetlaid lyocell and hybrid fiber-reinforced composites with polypropylene. Compos A Appl Sci Manuf 39:470–477. doi: 10.1016/j.compositesa.2007.12.007 CrossRefGoogle Scholar
  18. Kalka S, Huber T, Steinberg J, Baronian K, Müssig J, Staiger MP (2014) Biodegradability of all-cellulose composite laminates. Compos A Appl Sci Manuf 59:37–44. doi: 10.1016/j.compositesa.2013.12.012 CrossRefGoogle Scholar
  19. Kreze T, Malej S (2003) Structural characteristics of new and conventional regenerated cellulosic fibers. Text Res J 73:675–684. doi: 10.1177/004051750307300804 CrossRefGoogle Scholar
  20. Li D, Liu Z, Al-Haik M, Tehrani M, Murray F, Tannenbaum R, Garmestani H (2010) Magnetic alignment of cellulose nanowhiskers in an all-cellulose composite. Polym Bull 65:635–642. doi: 10.1007/s00289-010-0276-z CrossRefGoogle Scholar
  21. Li D, Sun X, Khaleel MA (2012) Materials design of all-cellulose composite using microstructure based finite element analysis. J Eng Mater Technol 134:010911. doi: 10.1115/1.4005417 CrossRefGoogle Scholar
  22. Liu L, Yu J, Cheng L, Qu W (2009) Mechanical properties of poly (butylene succinate)(PBS) biocomposites reinforced with surface modified jute fibre. Compos A Appl Sci Manuf 40:669–674. doi: 10.1016/j.compositesa.2009.03.002 CrossRefGoogle Scholar
  23. Mirza FA, Rasel SM, Kim MS, Afsar AM, Kim BS, Song JI (2010) Lyocell fiber reinforced polypropylene composites: effect of matrix modification. Adv Mater Res 123:1159–1162. doi: 10.4028/www.scientific.net/AMR.123-125.1159 CrossRefGoogle Scholar
  24. Nilsson H, Galland S, Larsson PT, Gamstedt EK, Nishino T, Berglund LA, Iversen T (2010) A non-solvent approach for high-stiffness all-cellulose biocomposites based on pure wood cellulose. Compos Sci Technol 70:1704–1712. doi: 10.1016/j.compscitech.2010.06.016 CrossRefGoogle Scholar
  25. Nishino T, Arimoto N (2007) All-cellulose composite prepared by selective dissolving of fiber surface. Biomacromolecules 8:2712–2716. doi: 10.1021/bm0703416 CrossRefGoogle Scholar
  26. Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687. doi: 10.1021/ma049300h CrossRefGoogle Scholar
  27. Ouajai S, Shanks RA (2009) Preparation, structure and mechanical properties of all-hemp cellulose biocomposites. Compos Sci Technol 69:2119–2126. doi: 10.1016/j.compscitech.2009.05.005 CrossRefGoogle Scholar
  28. Pang JH, Liu X, Wu M, Wu YY, Zhang XM, Sun RC (2014) Fabrication and characterization of regenerated cellulose films using different ionic liquids. J Spectrosc 2014:1–8. doi: 10.1155/2014/214057 CrossRefGoogle Scholar
  29. Persico P, Acierno D, Carfagna C, Cimino F (2011) Mechanical and thermal behaviour of ecofriendly composites reinforced by Kenaf and Caroà fibers. Int J Polym Sci 2011:1–7. doi: 10.1155/2011/841812 CrossRefGoogle Scholar
  30. Pullawan T, Wilkinson AN, Eichhorn SJ (2010) Discrimination of matrix-fibre interactions in all-cellulose nanocomposites. Compos Sci Technol 70:2325–2330. doi: 10.1016/j.compscitech.2010.09.013 CrossRefGoogle Scholar
  31. Pullawan T, Wilkinson AN, Zhang LN, Eichhorn SJ (2014) Deformation micromechanics of all-cellulose nanocomposites: comparing matrix and reinforcing components. Carbohydr Polym 100:31–39. doi: 10.1016/j.carbpol.2012.12.066 CrossRefGoogle Scholar
  32. Qi H, Cai J, Zhang L, Kuga S (2009) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules 10:1597–1602. doi: 10.1021/bm9001975 CrossRefGoogle Scholar
  33. Qin C, Soykeabkaew N, Xiuyuan N, Peijs T (2008) The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites. Carbohydr Polym 71:458–467. doi: 10.1016/j.carbpol.2007.06.019 CrossRefGoogle Scholar
  34. Sawpan MA, Pickering KL, Fernyhough A (2012) Flexural properties of hemp fibre reinforced polylactide and unsaturated polyester composites. Compos A Appl Sci Manuf 43:519–526. doi: 10.1016/j.compositesa.2011.11.021 CrossRefGoogle Scholar
  35. Schuermann H, Huber T, Staiger MP (2013) Prepreg style fabrication of all cellulose composites. In: Proceedings of 19th international conference on composite materials, Canada, pp 5626–5634Google Scholar
  36. Shibata M, Oyamada S, Kobayashi SI, Yaginuma D (2004) Mechanical properties and biodegradability of green composites based on biodegradable polyesters and lyocell fabric. J Appl Polym Sci 92:3857–3863. doi: 10.1002/app.20405 CrossRefGoogle Scholar
  37. Soykeabkaew N, Arimoto N, Nishino T, Peijs T (2008) All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibres. Compos Sci Technol 68:2201–2207. doi: 10.1016/j.compscitech.2008.03.023 CrossRefGoogle Scholar
  38. Soykeabkaew N, Nishino T, Peijs T (2009a) All-cellulose composites of regenerated cellulose fibres by surface selective dissolution. Compos A Appl Sci Manuf 40:321–328. doi: 10.1016/j.compositesa.2008.10.021 CrossRefGoogle Scholar
  39. Soykeabkaew N, Sian C, Gea S, Nishino T, Peijs T (2009b) All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose. Cellulose 16:435–444. doi: 10.1007/s10570-009-9285-1 CrossRefGoogle Scholar
  40. Wang Y, Chen L (2011) Impacts of nanowhisker on formation kinetics and properties of all-cellulose composite gels. Carbohydr Polym 83:1937–1946. doi: 10.1016/j.carbpol.2010.10.071 CrossRefGoogle Scholar
  41. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155. doi: 10.1002/adma.200400597 CrossRefGoogle Scholar
  42. Yousefi H, Nishino T, Faezipour M, Ebrahimi G, Shakeri A (2011) Direct fabrication of all-cellulose nanocomposite from cellulose microfibers using ionic liquid-based nanowelding. Biomacromolecules 12:4080–4085. doi: 10.1021/bm201147a CrossRefGoogle Scholar
  43. Zhao J, He X, Wang Y, Zhang W, Zhang X, Zhang X et al (2014) Reinforcement of all-cellulose nanocomposite films using native cellulose nanofibrils. Carbohydr Polym 104:143–150. doi: 10.1016/j.carbpol.2014.01.007 CrossRefGoogle Scholar
  44. Zhou M, Yan J, Li Y, Geng C, He C, Wang K, Fu Q (2013) Interfacial strength and mechanical properties of biocomposites based on ramie fibers and poly (butylene succinate). RSC Adv 3:26418–26426. doi: 10.1039/C3RA43713B CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Textile TechnologyIndian Institute of Technology DelhiHauz Khas, New DelhiIndia

Personalised recommendations