Skip to main content
Log in

Surface accessibility of cellulose fibrils studied by hydrogen–deuterium exchange with water

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A problem with cellulose-based materials is that they are highly influenced by moisture, leading to reduced strength properties with increasing moisture content. By achieving a more detailed understanding of the water–cellulose interactions, the usage of cellulose-based materials could be better optimized. Two different exchange processes of cellulose hydroxyl/deuteroxyl groups have been monitored by transmission FT-IR spectroscopy. By using line-shape-assisted deconvolution of the changing intensities, we have been able to follow the exchange kinetics in a very detailed and controlled manner. The findings reveal a hydrogen exchange that mainly is located at two different kinds of fibril surfaces, where the differences arise from the water accessibility of that specific surface. The slowly accessible regions are proposed to be located between the fibrils inside of the aggregates, and the readily accessible regions are suggested to be at the surfaces of the fibril aggregates. It was also possible to identify the ratio of slowly and readily accessible surfaces, which indicated that the average aggregate of cotton cellulose is built up by approximately three fibrils with an assumed average size of 12 × 12 cellulose chains. Additionally, the experimental setup enabled visualizing and discussing the implications of some of the deviating spectral features that are pronounced when recording FT-IR spectra of deuterium-exchanging cellulose: the insufficient red shift of the stretching vibrations and the vastly decreasing line widths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal V, Huber GW, Conner WC, Auerbach SM (2011) Simulating infrared spectra and hydrogen bonding in cellulose I beta at elevated temperatures. J Chem Phys 135:134506

    Article  Google Scholar 

  • Bardage S, Donaldson L, Tokoh C, Daniel G (2004) Ultrastructure of the cell wall of unbeaten Norway spruce pulp fibre surfaces. Nord Pulp Pap Res J 19:448–452

    Article  CAS  Google Scholar 

  • Bassan P, Kohler A, Martens H, Lee J, Byrne HJ, Dumas P, Gazi E, Brown M, Clarke N, Gardner P (2010) Resonant Mie scattering (RMieS) correction of infrared spectra from highly scattering biological samples. Analyst 135:268–277

    Article  CAS  Google Scholar 

  • Benedict H, Limbach HH, Wehlan M, Fehlhammer WP, Golubev NS, Janoschek R (1998) Solid state N-15 NMR and theoretical studies of primary and secondary geometric H/D isotope effects on low-barrier NHN-hydrogen bonds. J Am Chem Soc 120:2939–2950

    Article  CAS  Google Scholar 

  • Boulil B, Henri-Rousseau O, Blaise P (1988) Infrared spectra of hydrogen bonded species in solution. Chem Phys 126:263–290

    Article  CAS  Google Scholar 

  • Bratos S (1975) Profiles of hydrogen stretching ir bands of molecules with hydrogen bonds: a stochastic theory. I. Weak and medium strength hydrogen bonds. J Chem Phys 63:3499–3509

    Article  CAS  Google Scholar 

  • Cael JJ, Gardner KH, Koenig JL, Blackwell J (1975) Infrared and Raman spectroscopy of carbohydrates. Paper V. Normal coordinate analysis of cellulose I. J Chem Phys 62:1145–1153

    Article  CAS  Google Scholar 

  • Carteret C (2009) Mid- and near-Infrared study of hydroxyl groups at a silica surface: H-bond effect. J Phys Chem C 113:13300–13308

    Article  CAS  Google Scholar 

  • Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Article  CAS  Google Scholar 

  • England-Kretzer L, Fritzsche M, Luck WAP (1988) The intensity change of IR OH bands by H-bonds. J Mol Struct 175:277–282

    Article  CAS  Google Scholar 

  • Fahlén J, Salmén L (2003) Cross-sectional structure of the secondary wall of wood fibers as affected by processing. J Mater Sci 38:119–126

    Article  Google Scholar 

  • Fengel D (1971) Ideas on the ultrastructural organization of the cell wall components. J Polym Sci Part C Polym Symp 36:383–392

    Article  Google Scholar 

  • Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108:E1195–E1203

    Article  Google Scholar 

  • Frilette VJ, Hanle J, Mark H (1948) Rate of exchange of cellulose with heavy water. J Am Chem Soc 70:1107–1113

    Article  CAS  Google Scholar 

  • Hinterstoisser B, Salmén L (2000) Application of dynamic 2D FTIR to cellulose. Vib Spectrosc 22:111–118

    Article  CAS  Google Scholar 

  • Hinterstoisser B, Åkerholm M, Salmén L (2001) Effect of fiber orientation in dynamic FTIR study on native cellulose. Carbohydr Res 334:27–37

    Article  CAS  Google Scholar 

  • Hofstetter K, Hinterstoisser B, Salmén L (2006) Moisture uptake in native cellulose—the roles of different hydrogen bonds: a dynamic FT-IR study using deuterium exchange. Cellulose 13:131–145

    Article  CAS  Google Scholar 

  • Horikawa Y, Sugiyama J (2008) Accessibility and size of Valonia cellulose microfibril studied by combined deuteration/rehydrogenation and FTIR technique. Cellulose 15:419–424

    Article  CAS  Google Scholar 

  • Ibbett R, Wortmann F, Varga K, Schuster KC (2014) A morphological interpretation of water chemical exchange and mobility in cellulose materials derived from proton NMR T-2 relaxation. Cellulose 21:139–152

    Article  CAS  Google Scholar 

  • Ivanova NV, Korolenko EA, Korolik EV, Zhbankov RG (1989) IR spectrum of cellulose. J Appl Spectrosc 51:847–851

    Article  Google Scholar 

  • Jeffries R (1963) An infra-red study of the deuteration of cellulose and cellulose derivatives. Polymer 4:375–389

    Article  CAS  Google Scholar 

  • Jeffries R (1964) The amorphous fraction of cellulose and its relation to moisture sorption. J Appl Polym Sci 8:1213–1220

    Article  CAS  Google Scholar 

  • Jung C (2000) Insight into protein structure and protein-ligand recognition by Fourier transform infrared spectroscopy. J Mol Recognit 13:325–351

    Article  CAS  Google Scholar 

  • Kohler R, Dück R, Ausperger B, Alex R (2003) A numeric model for the kinetics of water vapor sorption on cellulosic reinforcement fibers. Compos Interfaces 10:255–276

    Article  CAS  Google Scholar 

  • Langan P, Petridis L, O’Neill HM, Pingali SV, Foston M, Nishiyama Y, Schulz R, Lindner B, Hanson BL, Harton S, Heller WT, Urban V, Evans BR, Gnanakaran S, Ragauskas AJ, Smith JC, Davison BH (2014) Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chem 16:63–68

    Article  CAS  Google Scholar 

  • Larsson PT, Wickholm K, Iversen T (1997) A CP/MAS 13C NMR investigation of molecular ordering in celluloses. Carbohydr Res 302:19–25

    Article  CAS  Google Scholar 

  • Lee CM, Kubicki JD, Fan B, Zhong L, Jarvis MC, Kim SH (2015) Hydrogen-bonding network and OH stretch vibration of cellulose: comparison of computational modeling with polarized IR and SFG spectra. J Phys Chem B 119:15138–15149

    Article  CAS  Google Scholar 

  • Leppänen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16:999–1015

    Article  Google Scholar 

  • Liang CY, Marchessault RH (1959) Infrared spectra of crystalline polysaccharides. I. Hydrogen bonds in native celluloses. J Polym Sci 37:385–395

    Article  CAS  Google Scholar 

  • Liland KH, Almoy T, Mevik BH (2010) Optimal choice of baseline correction for multivariate calibration of spectra. Appl Spectrosc 64:1007–1016

    Article  CAS  Google Scholar 

  • Lindh EL, Bergenstråhle-Wohlert M, Terenzi C, Salmén L, Furó I (2016a) Non-exchanging hydroxyl groups on the surface of cellulose fibrils: the role of interaction with water. Carbohydr Res 434:136–142

    Article  CAS  Google Scholar 

  • Lindh EL, Stilbs P, Furó I (2016b) Site-resolved 2H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra. J Magn Reson 268:18–24

    Article  CAS  Google Scholar 

  • Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81

    Article  CAS  Google Scholar 

  • Mann J, Marrinan HJ (1956a) The reaction between cellulose and heavy water. Part 1. A qualitative study by infra-red spectroscopy. Trans Faraday Soc 52:481–487

    Article  CAS  Google Scholar 

  • Mann J, Marrinan HJ (1956b) The reaction between cellulose and heavy water. Part 2.—measurement of absolute accessibility and crystallinity. Trans Faraday Soc 52:487–492

    Article  CAS  Google Scholar 

  • Mann J, Marrinan HJ (1956c) The reaction between cellulose and heavy water. Part 3.—a quantitative study by infra-red spectroscopy. Trans Faraday Soc 52:492–497

    Article  CAS  Google Scholar 

  • Maréchal Y, Chanzy H (2000) The hydrogen bond network in I-beta cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196

    Article  Google Scholar 

  • Martins MA, Teixeira EM, Correa AC, Ferreira M, Mattoso LHC (2011) Extraction and characterization of cellulose whiskers from commercial cotton fibers. J Mater Sci 46:7858–7864

    Article  CAS  Google Scholar 

  • Max JJ, Chapados C (2009) Isotope effects in liquid water by infrared spectroscopy. III. H2O and D2O spectra from 6000 to 0 cm−1. J Chem Phys 131:184505

    Article  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249

    Article  CAS  Google Scholar 

  • Nishiyama Y, Isogai A, Okano T, Muller M, Chanzy H (1999) Intracrystalline deuteration of native cellulase. Macromolecules 32:2078–2081

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose 1 beta from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose I-beta. Biomacromolecules 9:3133–3140

    Article  CAS  Google Scholar 

  • Okubayashi S, Griesser UJ, Bechtold T (2004) A kinetic study of moisture sorption and desorption on lyocell fibers. Carbohydr Polym 58:293–299

    Article  CAS  Google Scholar 

  • Olivero JJ, Longbothum RL (1977) Empirical fits to the Voigt line width: a brief review. J Quant Spectrosc Radiat Transf 17:233–236

    Article  Google Scholar 

  • Pimentel CG, McClellan LA (1960) The hydrogen bond. Reinhold Publishing Corporation, New York

    Google Scholar 

  • Pönni R, Vuorinen T, Kontturi E (2012) Proposed nano-scale coalescence of cellulose in chemical pulp fibers during technical treatments. BioResources 7:6077–6108

    Article  Google Scholar 

  • Priest DJ, Shimell RJ (1963) Determination of the accessibility of cellulose films by infra-red spectroscopy. J Appl Chem 13:383–391

    Article  CAS  Google Scholar 

  • Reishofer D, Spirk S (2016) Deuterium and cellulose: a comprehensive review. Adv Polym Sci 271:93–114

    Google Scholar 

  • Salmén L, Bergström E (2009) Cellulose structural arrangement in relation to spectral changes in tensile loading FTIR. Cellulose 16:975–982

    Article  Google Scholar 

  • Salmén L, Fahlén J (2006) Reflections on the ultrastructure of softwood fibers. Cellul Chem Technol 40:181–185

    Google Scholar 

  • Schreier F (2011) Optimized implementations of rational approximations for the Voigt and complex error function. J Quant Spectrosc Radiat Transf 112:1010–1025

    Article  CAS  Google Scholar 

  • Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40

    Article  CAS  Google Scholar 

  • Tashiro K, Kobayashi M (1991) Theoretical evaluation of 3-dimensional elastic-constants of native and regenerated celluloses: role of hydrogen-bonds. Polymer 32:1516–1530

    Article  CAS  Google Scholar 

  • Thomas LH, Forsyth VT, Šturcová A, Kennedy CJ, May RP, Altaner CM, Apperley DC, Wess TJ, Jarvis MC (2013) Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161:465–476

    Article  CAS  Google Scholar 

  • Tsuboi M (1957) Infrared spectrum and crystal structure of cellulose. J Polym Sci 25:159–171

    Article  CAS  Google Scholar 

  • Venyaminov SY, Prendergast FG (1997) Water (H2O and D2O) molar absorptivity in the 1000–4000 cm−1 range and quantitative infrared spectroscopy of aqueous solutions. Anal Biochem 248:234–245

    Article  CAS  Google Scholar 

  • Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312:123–129

    Article  CAS  Google Scholar 

  • Wiley JH, Atalla RH (1987) Band assignments in the raman spectra of celluloses. Carbohydr Res 160:113–129

    Article  CAS  Google Scholar 

  • Xie Y, Hill CS, Jalaludin Z, Curling S, Anandjiwala R, Norton A, Newman G (2011a) The dynamic water vapour sorption behaviour of natural fibres and kinetic analysis using the parallel exponential kinetics model. J Mater Sci 46:479–489

    Article  CAS  Google Scholar 

  • Xie YJ, Hill CAS, Jalaludin Z, Sun DY (2011b) The water vapour sorption behaviour of three celluloses: analysis using parallel exponential kinetics and interpretation using the Kelvin–Voigt viscoelastic model. Cellulose 18:517–530

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Leif Falk for the creation of the special-made box suitable for infrared measurements and Malin Bergenstråhle-Wohlert for all the helpful comments and discussions. Wallenberg Wood Science Center is gratefully acknowledged for the financial support.

Funding

Funding was provided by Knut och Alice Wallenbergs Stiftelse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Salmén.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1462 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindh, E.L., Salmén, L. Surface accessibility of cellulose fibrils studied by hydrogen–deuterium exchange with water. Cellulose 24, 21–33 (2017). https://doi.org/10.1007/s10570-016-1122-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1122-8

Keywords

Navigation