Advertisement

Cellulose

, Volume 23, Issue 6, pp 3535–3541 | Cite as

Oxidation and structural changes in NMMO-regenerated cellulose films

  • Ralf Zimmermann
  • Yvonne Müller
  • Uwe Freudenberg
  • Dieter Jehnichen
  • Antje Potthast
  • Thomas Rosenau
  • Carsten Werner
Original Paper

Abstract

Carbonyl and carboxyl groups introduced by oxidative processes during production and purification of celluloses determine intra- and intermolecular interactions and thus application-related bulk and surface properties of cellulosic materials. We report a comprehensive approach to the quantification of carboxyl and carbonyl groups in cellulose films upon reconstitution from NMMO solutions. Measurements of the excess conductivity were combined with the determination of the molecular weight distribution, quantification of the carboxyl and carbonyl group content, crystallinity and film swelling in aqueous solutions. TEMPO-oxidized, NMMO-regenerated cellulose films were additionally analysed as a reference system for extensive cellulose oxidation. Our reported data demonstrate that dissolution of cellulose in NMMO results in the formation of onic acids, chain degradation, increased ionization and film swelling, whereas TEMPO-oxidation introduced carbonyl groups as well as onic and uronic acids causing a significantly increased charging, ion accumulation and swelling even at higher crystallinity.

Keywords

Cellulose Oxidation Carboxyl groups Carbonyl groups Chain degradation Crystallinity Swelling NMMO TEMPO 

Notes

Acknowledgments

The financial support of the Austrian Christian Doppler Research Society (Lab for “Advanced Cellulose Chemistry and Analytics” at BOKU University Vienna) is gratefully acknowledged.

Supplementary material

10570_2016_1084_MOESM1_ESM.pdf (74 kb)
Supplementary material 1 (PDF 73 kb)

References

  1. Abe Y, Mochizuki A (2003) Hemodialysis membrane prepared from cellulose/N-methylmorpholine-N-oxide solution. III. The relationship between the drying condition of the membrane and its permeation behavior. J Appl Polym Sci 89:1671–1681. doi: 10.1002/app.12439 CrossRefGoogle Scholar
  2. Adorjan I, Potthast A, Rosenau T, Sixta H, Kosma P (2005) Discoloration of cellulose solutions in N-methylmorpholine-N-oxide (Lyocell). Part 1: studies on model compounds and pulps. Cellulose 12:51–57. doi: 10.1007/s10570-004-0212-1 CrossRefGoogle Scholar
  3. Bohrn R, Potthast A, Rosenau T, Sixta H, Kosma P (2005) Synthesis and testing of a novel fluorescence label for carboxyls in carbohydrates and cellulosics. Synlett 20:3087–3090. doi: 10.1055/s-2005-921923 Google Scholar
  4. Bohrn R, Potthast A, Schiehser S, Rosenau T, Sixta H, Kosma P (2006) The FDAM method: determination of carboxyl profiles in cellulosic materials by combining group-selective fluorescence labeling with GPC. Biomacromolecules 7:1743–1750. doi: 10.1021/bm060039h CrossRefGoogle Scholar
  5. De Feijter JA, Benjamins J, Veer FA (1978) Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air–water interface. Biopolymers 17:1758–1772. doi: 10.1002/bip.1978.360170711 CrossRefGoogle Scholar
  6. Delgado ÁV, González-Caballero F, Hunter RJ, Koopal LK, Lyklema J (2007) Measurement and interpretation of electrokinetic phenomena. J Colloid Interface Sci 309:194–224. doi: 10.1016/j.jcis.2006.12.075 CrossRefGoogle Scholar
  7. Dubé M, Deslandes Y, Marchesault RH (1984) Spherulitic precipitation of cellulose from amine-oxide solutions. J Polym Sci Polym Lett E 22:163–171. doi: 10.1002/pol.1984.130220307 CrossRefGoogle Scholar
  8. Fidale LC, Ruiz N, Heinze T, El Seoud OA (2008) Cellulose swelling by aprotic and protic solvents: What are the similarities and differences? Macromol Chem Phys 209:1240–1254. doi: 10.1002/macp.200800021 CrossRefGoogle Scholar
  9. Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524. doi: 10.1016/S0079-6700(01)00025-9 CrossRefGoogle Scholar
  10. Freudenberg U, Zschoche S, Simon F, Janke A, Schmidt K, Behrens SH, Auweter H, Werner C (2005) Covalent immobilization of cellulose layers onto maleic anhydride copolymer thin films. Biomacromolecules 6:1628–1634. doi: 10.1021/bm0492529 CrossRefGoogle Scholar
  11. Isogai A, Kato Y (1998) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5:153–164. doi: 10.1023/A:1009208603673 CrossRefGoogle Scholar
  12. Jie X, Cao Y, Lin B, Yuan Q (2004) Gas permeation performance of cellulose hollow fiber membranes made from the cellulose/N-methylmorpholine-N-oxide/H2O system. J Appl Polym Sci 91:1873–1880. doi: 10.1002/app.2385 CrossRefGoogle Scholar
  13. Kim CW, Kim DS, Kang SY, Marquez M, Joo YL (2006) Structural studies of electrospun cellulose nanofibers. Polymer 47:5097–5107. doi: 10.1016/j.polymer.2006.05.033 CrossRefGoogle Scholar
  14. Klemm D, Philipp B, Heinze T, Wagenknecht W (1998) Comprehensive cellulose chemistry, vol 1: fundamentals and analytical methods. Wiley, WeinheimCrossRefGoogle Scholar
  15. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi: 10.1002/anie.200460587 CrossRefGoogle Scholar
  16. Kolpak FJ, Blackwell J (1976) Determination of the structure of cellulose II. Macromolecules 9:273–278. doi: 10.1021/ma60050a019 CrossRefGoogle Scholar
  17. Li HJ, Cao YM, Qin JJ, Jie XM, Wang TH, Liu JH, Yuan Q (2006) Development and characterization of anti-fouling cellulose hollow fiber UF membranes for oil–water separation. J Membr Sci 279:328–335. doi: 10.1016/j.memsci.2005.12.025 CrossRefGoogle Scholar
  18. Lide DR, Frederiske HPR (1995) CRC Handbook of chemistry and physics. CRC Press, Boca RatonGoogle Scholar
  19. Liebner F, Potthast A, Haimer E, Wendland M, Rosenau T (2008) Cellulose aerogels: highly porous, ultra-lightweight materials. Holzforschung 62:129–135. doi: 10.1515/HF.2008.051 CrossRefGoogle Scholar
  20. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi: 10.1039/C0CS00108B CrossRefGoogle Scholar
  21. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082. doi: 10.1021/ja0257319 CrossRefGoogle Scholar
  22. Notley SM, Pettersson B, Wågberg L (2004) Direct measurement of attractive van der Waals’ Forces between regenerated cellulose surfaces in an aqueous environment. J Am Chem Soc 126:13930–13931. doi: 10.1021/ja045992d CrossRefGoogle Scholar
  23. Ogieglo W, Wormeester H, Eichhorn KJ, Wessling M, Benes NE (2015) In situ ellipsometry studies on swelling of thin polymer films: a review. Prog Polym Sci 42:42–78. doi: 10.1016/j.progpolymsci.2014.09.004 CrossRefGoogle Scholar
  24. Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391. doi: 10.1016/j.carres.2005.08.007 CrossRefGoogle Scholar
  25. Potthast A, Röhrling J, Rosenau T, Borgards A, Sixta H, Kosma P (2003) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 3. Monitoring oxidative processes. Biomacromolecules 4:743–749. doi: 10.1021/bm025759c CrossRefGoogle Scholar
  26. Röhrling J, Potthast A, Rosenau T, Lange T, Ebner G, Sixta H, Kosma P (2002a) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 1. Method development. Biomacromolecules 3:959–968. doi: 10.1021/bm020029q CrossRefGoogle Scholar
  27. Röhrling J, Potthast A, Rosenau T, Lange T, Borgards A, Sixta H, Kosma P (2002b) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 2. Validation and applications. Biomacromolecules 3:969–975. doi: 10.1021/bm020030p CrossRefGoogle Scholar
  28. Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog Polym Sci 26:1763–1837. doi: 10.1016/S0079-6700(01)00023-5 CrossRefGoogle Scholar
  29. Sahin HT, Arslan MB (2008) A study on physical and chemical properties of cellulose paper immersed in various solvent mixtures. Int J Mol Sci 9:78–88. doi: 10.3390/ijms9010078 CrossRefGoogle Scholar
  30. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491. doi: 10.1021/bm0703970 CrossRefGoogle Scholar
  31. Tahiri C, Mignon MR (2000) TEMPO-oxidation of cellulose: synthesis and characterisation of polyglucuronans. Cellulose 7:177–188. doi: 10.1023/A:1009276009711 CrossRefGoogle Scholar
  32. Yokota S, Kitaoka T, Opietnik M, Rosenau T, Wariishi H (2008) Synthesis of gold nanoparticles for in situ conjugation with structural carbohydrates. Angew Chem Int Ed 47:9866–9869. doi: 10.1002/anie.200803922 CrossRefGoogle Scholar
  33. Zimmermann R, Dukhin SS, Werner C, Duval JFL (2013) On the use of electrokinetics for unraveling charging and structure of soft planar polymer films. Curr Opin Colloid Interface Sci 18:83–92. doi: 10.1016/j.cocis.2013.02.001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Ralf Zimmermann
    • 1
  • Yvonne Müller
    • 1
    • 2
  • Uwe Freudenberg
    • 1
    • 3
  • Dieter Jehnichen
    • 1
  • Antje Potthast
    • 4
  • Thomas Rosenau
    • 4
  • Carsten Werner
    • 1
    • 3
  1. 1.Leibniz Institute of Polymer Research DresdenMax Bergmann Center of Biomaterials DresdenDresdenGermany
  2. 2.Wacker Chemie AGNünchritzGermany
  3. 3.Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
  4. 4.Christian-Doppler-Laboratory for Advanced Cellulose Chemistry and AnalyticsBOKU University ViennaViennaAustria

Personalised recommendations