, Volume 23, Issue 6, pp 3885–3899 | Cite as

Fabrication of highly amphiphobic paper using pulp debonder

  • Lu Jiang
  • Zhenguan Tang
  • Rahmat M. Clinton
  • Dennis W. Hess
  • Victor Breedveld
Original Paper


As a biodegradable, inexpensive and universally accessible material, paper is used widely in many applications, including packaging, office supplies and household products. However, the hydrophilic and oleophilic nature of paper often limits its use in applications that involve direct contact with liquids. The main purpose of this study was to create highly amphiphobic paper for products such as low cost medical testing strips, liquid packaging, and breathable and disposable medical apparel. A three-step process was developed to create paper with contact angles greater than 150° for water and motor oil, and greater than 140° for n-hexadecane. First, a commercially available debonding agent was used to manipulate the dimensions of the fiber network through efficient fines removal and modification of inter-fiber hydrogen bonding. Then an oxygen plasma was used to create nano-scale roughness on the micrometer-sized fibers and to remove residual fines that were blocking the inter-fiber pores. Finally, the paper was immersed in a fluorosilane solution to obtain a thin, low surface energy coating. XPS, SEM, mercury porosimetry and profilometry were used to evaluate changes in the fiber network after each step. This study marks the first report that uses debonder agents specifically to modify the anti-wetting properties of paper substrates by controlling the topology of the fiber network. The processes used in this procedure are simple, cost effective and amenable to scale-up.


Amphiphobic Cellulose Debonder Fines Oxygen plasma 



The authors thank the Georgia Tech Renewable Bioproducts Institute (RBI) for funding support of L. Jiang. The authors also thank Dr. Roman Popil (RBI) for guidance on using the ZD tensile tester and Sonisys 3D ultrasonic test instrument, Georgia Pacific Cellulose for donating pulps, Steve Chaffin (Emerald Performance Materials) for the generous donation of debonder, Dr. Rallming Yang (RBI) for guidance on papermaking and refining techniques, and Dong-Yeun Koh from Dr. Ryan P. Lively’s group (Georgia Tech) for assistance with the mercury porosimetry studies.


  1. Balu B, Breedveld V, Hess DW (2008) Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir 24:4785–4790. doi: 10.1021/la703766c CrossRefGoogle Scholar
  2. Balu B, Kim JS, Breedveld V, Hess DW (2009) Design of superhydrophobic paper/cellulose surfaces via plasma enhanced etching and deposition. Contact Angle, Wettability Adhes 6:235–249. doi: 10.1163/ej.9789004169326.i-400.104 CrossRefGoogle Scholar
  3. Barshilia HC, Gupta N (2014) Superhydrophobic polytetrafluoroethylene surfaces with leaf-like micro-protrusions through Ar + O-2 plasma etching process. Vacuum 99:42–48. doi: 10.1016/j.vacuum.2013.04.020 CrossRefGoogle Scholar
  4. Choi W, Tuteja A, Chhatre S, Mabry JM, Cohen RE, McKinley GH (2009) Fabrics with tunable oleophobicity. Adv Mater 21:2190. doi: 10.1002/adma.200802502 CrossRefGoogle Scholar
  5. Choi HJ, Shin JH, Choo S, Ryu SW, Kim YD, Lee H (2015) Fabrication of superhydrophobic and oleophobic Al surfaces by chemical etching and surface fluorination. Thin Solid Films 585:76–80. doi: 10.1016/j.tsf.2015.03.046 CrossRefGoogle Scholar
  6. Fatehi P, Outhouse K, Xiao HN (2009) Cationic alkoxylated amine surfactant as a debonding agent for papers made of sulfite-bleached fibers. Ind Eng Chem Res 48:749–754. doi: 10.1021/ie800929p CrossRefGoogle Scholar
  7. Fatehi P, Outhouse KC, Xiao HN, Ni YH (2010) Debonding performance of various cationic surfactants on networks made of bleached kraft fibers. Ind Eng Chem Res 49:11402–11407. doi: 10.1021/ie101442p CrossRefGoogle Scholar
  8. Ge DT, Yang LL, Wang CB, Lee E, Zhang YQ, Yang S (2015) A multi-functional oil–water separator from a selectively pre-wetted superamphiphobic paper. Chem Commun 51:6149–6152. doi: 10.1039/c4cc09813g CrossRefGoogle Scholar
  9. Hao W, Shao ZZ (2014) Superhydrophobic and highly oleophobic nylon surface. Acta Chim Sinica 72:1023–1028. doi: 10.6023/a14070510 CrossRefGoogle Scholar
  10. Hayn RA, Owens JR, Boyer SA, McDonald RS, Lee HJ (2011) Preparation of highly hydrophobic and oleophobic textile surfaces using microwave-promoted silane coupling. J Mater Sci 46:2503–2509. doi: 10.1007/s10853-010-5100-5 CrossRefGoogle Scholar
  11. Im M, Im H, Lee J-H, Yoon J-B, Choi Y-K (2010) A robust superhydrophobic and superoleophobic surface with inverse-trapezoidal microstructures on a large transparent flexible substrate. Soft Matter 6:1401–1404. doi: 10.1039/b925970h CrossRefGoogle Scholar
  12. Joseleau JP, Chevalier-Billosta V, Ruel K (2012) Interaction between microfibrillar cellulose fines and fibers: influence on pulp qualities and paper sheet properties. Cellulose 19:769–777. doi: 10.1007/s10570-012-9693-5 CrossRefGoogle Scholar
  13. Koubaa A, Koran Z (1995) Measure of the internal bond strength of paper/board. Tappi J 78:103–112Google Scholar
  14. Larsen ST, Andersen NK, Sogaard E, Taboryski R (2014) Structure irregularity impedes drop roll-off at superhydrophobic surfaces. Langmuir 30:5041–5045. doi: 10.1021/la5007633 CrossRefGoogle Scholar
  15. Lee HJ, Willis CR, Stone CA (2011) Modeling and preparation of a super-oleophobic non-woven fabric. J Mater Sci 46:3907–3913. doi: 10.1007/s10853-011-5314-1 CrossRefGoogle Scholar
  16. Li L, Breedveld V, Hess DW (2013) Design and fabrication of superamphiphobic paper surfaces. ACS Appl Mater Interfaces 5:5381–5386. doi: 10.1021/am401436m CrossRefGoogle Scholar
  17. Li J, Yan L, Ouyang QL, Zha F, Jing ZJ, Li X, Lei ZQ (2014) Facile fabrication of translucent superamphiphobic coating on paper to prevent liquid pollution. Chem Eng J 246:238–243. doi: 10.1016/j.cej.2014.02.062 CrossRefGoogle Scholar
  18. Liu Y, Xiu Y, Hess DW, Wong CP (2010) Silicon surface structure-controlled oleophobicity. Langmuir 26:8908–8913. doi: 10.1021/la904686c CrossRefGoogle Scholar
  19. Lu TL, Liang GZ, Guo Z (2006) Preparation and characterization of organic–inorganic hybrid composites based on multiepoxy silsesquioxane and cyanate resin. J Appl Polym Sci 101:3652–3658. doi: 10.1002/app.22743 CrossRefGoogle Scholar
  20. Michielsen S, Lee HJ (2007) Design of a superhydrophobic surface using woven structures. Langmuir 23:6004–6010. doi: 10.1021/la063157z CrossRefGoogle Scholar
  21. Moura MJ, Ferreira PJ, Figueiredo MM (2005) Mercury intrusion porosimetry in pulp and paper technology. Powder Technol 160:61–66. doi: 10.1016/j.powtec.2005.08.033 CrossRefGoogle Scholar
  22. Niskanen K, Sirvio J, Wathen R (2005) Tensile strength of paper revisited. In: Advances in paper science and technology: transactions of the 13th fundamental research symposium, vols 1–3Google Scholar
  23. Rahmawan Y, Moon MW, Kim KS, Lee KR, Suh KY (2010) Wrinkled, dual-scale structures of diamond-like carbon (DLC) for superhydrophobicity. Langmuir 26:484–491. doi: 10.1021/la902129k CrossRefGoogle Scholar
  24. Seth RS (2003) The measurement and significance of fines—their addition to pulp improves sheet consolidation. Pulp Paper Can 104:41–44Google Scholar
  25. Steele A, Bayer I, Loth E (2009) Inherently superoleophobic nanocomposite coatings by spray atomization. Nano Lett 9:501–505. doi: 10.1021/nl8037272 CrossRefGoogle Scholar
  26. Talaeipoor M, Imani R (2008) Effects of debonding agents and refining on the properties of deinked pulp. Tappi J 7:12–14Google Scholar
  27. Tang Z, Hess DW, Breedveld V (2015) Fabrication of oleophobic paper with tunable hydrophilicity by treatment with non-fluorinated chemicals. J Mater Chem A 3:14651–14660. doi: 10.1039/c5ta03520a CrossRefGoogle Scholar
  28. Tuteja A et al (2007) Designing superoleophobic surfaces. Science 318:1618–1622. doi: 10.1126/science.1148326 CrossRefGoogle Scholar
  29. Washburn EW (1921) Note on a method of determining the distribution of pore sizes in a porous material. Proc Natl Acad Sci USA 7:115–116. doi: 10.1073/pnas.7.4.115 CrossRefGoogle Scholar
  30. Xie L, Tang Z, Jiang L, Breedveld V, Hess DW (2015) Creation of superhydrophobic wood surfaces by plasma etching and thin-film deposition. Surf Coat Technol 281:125–132. doi: 10.1016/j.surfcoat.2015.09.052 CrossRefGoogle Scholar
  31. Yang J, Wu X, Zhang Q, Song H (2014) Fabrication of superamphiphobic-textured surfaces with reversibly switchable wettability. J Adhes Sci Technol 28:1687–1694. doi: 10.1080/01694243.2014.913339 CrossRefGoogle Scholar
  32. Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc 95:65–87. doi: 10.1098/rstl.1805.0005 CrossRefGoogle Scholar
  33. Zhang G et al (2013) Bi-functional random copolymers for one-pot fabrication of superamphiphobic particulate coatings. J Mater Chem A 1:6226–6237. doi: 10.1039/c3ta10722a CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Renewable Bioproducts InstituteGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations