Skip to main content
Log in

Rheological behavior and particle suspension capability of guar gum: sodium tetraborate decahydrate gels containing cellulose nanofibrils

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Guar gum (GG) fracturing fluids were studied by incorporating cellulose nanofibrils (CNFs) in anhydrous borax crosslinked guar gum gels. To fully understand the impact of CNF on the proppant suspension capability of developed fracturing fluids, their shear rate-dependent viscosity and viscoelasticity were investigated. The shear rate dependencies of fluids was fitted to the Carreau model. The zero shear rate viscosity and elasticity of fracturing fluids increased significantly by incorporating CNF in guar gum gels. On the other hand, the viscosity at high shear rates (>100 s−1) decreased as desired. The proppant settling velocities through fracturing fluids were evaluated by modeling the terminal falling velocity of proppants moving through a Carreau model fluid. The experimental results of the rheological behavior and the modeling results of the proppant settling rate indicated that the fracturing fluids containing CNF had better suspension capabilities. In addition, the lower viscosities of CNF formulated GG gels at higher shear rates will make them more pumpable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acharya AR (1986) Particle transport in viscous and viscoelastic fracturing fluids. SPE Prod Eng 1(02):104–110

    Article  Google Scholar 

  • Acharya A (1987) Viscoelasticity of crosslinked fracturing fluids and proppant transport. In: SPE production operations symposium. Society of Petroleum Engineers

  • Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C, Garnier C, Doublier J-L (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80(3):677–686

    Article  CAS  Google Scholar 

  • Asadi M, Shah SN, Lord DL (1999) Static/dynamic settling of proppant in non-newtonian hydraulic fracturing fluids. In: SPE mid-continent operations symposium. Society of Petroleum Engineers

  • Asadi M, Conway MW, Barree RD (2002) Zero shear viscosity determination of fracturing fluids: an essential parameter in proppant transport characterizations. In: International symposium and exhibition on formation damage control. Society of Petroleum Engineers

  • Banerjee C, Ghosh S, Sen G, Mishra S, Shukla P, Bandopadhyay R (2013) Study of algal biomass harvesting using cationic guar gum from the natural plant source as flocculant. Carbohydr Polym 92(1):675–681

    Article  CAS  Google Scholar 

  • Bishop M, Shahid N, Yang J, Barron AR (2004) Determination of the mode and efficacy of the cross-linking of guar by borate using MAS 11B NMR of borate cross-linked guar in combination with solution 11B NMR of model systems. Dalton Trans 17:2621–2634

    Article  Google Scholar 

  • Bocchinfuso G, Mazzuca C, Sandolo C, Margheritelli S, Alhaique F, Coviello T, Palleschi A (2010) Guar gum and scleroglucan interactions with borax: experimental and theoretical studies of an unexpected similarity. J Phys Chem B 114(41):13059–13068

    Article  CAS  Google Scholar 

  • Bush M, Phan-Thien N (1984) Drag force on a sphere in creeping motion throug a carreau model fluid. J Nonnewton Fluid Mech 16(3):303–313

    Article  Google Scholar 

  • Carreau P, Kee DD, Daroux M (1979) An analysis of the viscous behaviour of polymeric solutions. Can J Chem Eng 57(2):135–140

    Article  CAS  Google Scholar 

  • Chhabra RP (1993) Bubbles, drops, and particles in non-Newtonian fluids. CRC Press, Boca Raton

    Google Scholar 

  • Elgaddafi R, Ahmed R, George M, Growcock F (2012) Settling behavior of spherical particles in fiber-containing drilling fluids. J Petrol Sci Eng 84:20–28

    Article  Google Scholar 

  • Gidley JL (1989) Recent advances in hydraulic fracturing. Society of Petroleum Engineers, Richardson, TX

  • Goel N, Shah SN, Yuan WL, O’Rear EA (2001) Suspension characteristics of borate-crosslinked gels: rheology and atomic force microscopy measurements. J Appl Polym Sci 82(12):2978–2990

    Article  CAS  Google Scholar 

  • Goel N, Shah SN, Grady BP (2002) Correlating viscoelastic measurements of fracturing fluid to particles suspension and solids transport. J Petrol Sci Eng 35(1):59–81

    Article  CAS  Google Scholar 

  • Guenet J-M (2000) Structure versus rheological properties in fibrillar thermoreversible gels from polymers and biopolymers. J Rheol (1978–present) 44(4):947–960

    Article  CAS  Google Scholar 

  • Harris PC, Morgan RG, Heath SJ (2005) Measurement of proppant transport of frac fluids. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers

  • Hu YT, Chung H, Maxey JE (2015a) What is more important for proppant transport, viscosity or elasticity? In: SPE hydraulic fracturing technology conference. Society of Petroleum Engineers

  • Hu YT, Kishore T, Maxey J, Loveless D (2015b) Effects of crosslinking chemistry on proppant suspension in guar networks. In: SPE international symposium on oilfield chemistry. Society of Petroleum Engineers

  • Jafry HR, Pasquali M, Barron AR (2011) Effect of functionalized nanomaterials on the rheology of borate cross-linked guar gum. Ind Eng Chem Res 50(6):3259–3264

    Article  CAS  Google Scholar 

  • Jin L, Penny GS (1995) Dimensionless methods for the study of particle settling in non-Newtonian fluids. J Petrol Technol 47(03):223–228

    Article  CAS  Google Scholar 

  • Jones J, Marques C (1990) Rigid polymer network models. Journal de Physique 51(11):1113–1127

    Article  CAS  Google Scholar 

  • Kesavan S, Prud’Homme RK (1992) Rheology of guar and (hydroxypropyl) guar crosslinked by borate. Macromolecules 25(7):2026–2032

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466

    Article  CAS  Google Scholar 

  • Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15(3):425–433

    Article  CAS  Google Scholar 

  • Legemah M, Guerin M, Sun H, Qu Q (2014) Novel high-efficiency boron crosslinkers for low-polymer-loading fracturing fluids. SPE J 19(04):737–743

    Article  Google Scholar 

  • Lei C, Clark PE (2004) Crosslinking of guar and guar derivatives. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers

  • Machač I, Šiška B, Machačová L (2000) Terminal falling velocity of spherical particles moving through a Carreau model fluid. Chem Eng Process 39(4):365–369

    Article  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941

    Article  Google Scholar 

  • Pérez R, Siquier S, Ramίrez N, Müller A, Sáez A (2004) Non-Newtonian annular vertical flow of sand suspensions in aqueous solutions of guar gum. J Petrol Sci Eng 44(3):317–331

    Article  Google Scholar 

  • Pezron E, Leibler L, Ricard A, Audebert R (1988a) Reversible gel formation induced by ion complexation. 2. Phase diagrams. Macromolecules 21(4):1126–1131

    Article  CAS  Google Scholar 

  • Pezron E, Ricard A, Lafuma F, Audebert R (1988b) Reversible gel formation induced by ion complexation. 1. Borax-galactomannan interactions. Macromolecules 21(4):1121–1125

    Article  CAS  Google Scholar 

  • Pezron E, Ricard A, Leibler L (1990) Rheology of galactomannan-borax gels. J Polym Sci Part B Polym Phys 28(13):2445–2461

    Article  CAS  Google Scholar 

  • Power D, Larson I, Hartley P, Dunstan D, Boger D (1998) Atomic force microscopy studies on hydroxypropylguar gels formed under shear. Macromolecules 31(25):8744–8748

    Article  CAS  Google Scholar 

  • Power DJ, Paterson L, Boger DV (2001) Advanced rheological techniques for optimizing borate-crosslinked fracturing fluid selection and performance. SPE Drill Complet 16(04):239–242

    Article  Google Scholar 

  • Risica D, Barbetta A, Vischetti L, Cametti C, Dentini M (2010) Rheological properties of guar and its methyl, hydroxypropyl and hydroxypropyl-methyl derivatives in semidilute and concentrated aqueous solutions. Polymer 51(9):1972–1982

    Article  CAS  Google Scholar 

  • Roodhart L (1985) Proppant settling in non-Newtonian fracturing fluids. In: SPE/DOE low permeability gas reservoirs symposium. Society of Petroleum Engineers

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Article  Google Scholar 

  • Tayal A, Pai VB, Khan SA (1999) Rheology and microstructural changes during enzymatic degradation of a guar-borax hydrogel. Macromolecules 32(17):5567–5574

    Article  CAS  Google Scholar 

  • Wang S, Zhang Y, Guo J, Lai J, Wang D, He L, Qin Y (2014) A study of relation between suspension behavior and microstructure and viscoelastic property of guar gum fracturing fluid. J Petrol Sci Eng 124:432–435

    Article  CAS  Google Scholar 

  • Wientjes RH, Duits MH, Jongschaap RJ, Mellema J (2000) Linear rheology of guar gum solutions. Macromolecules 33(26):9594–9605

    Article  CAS  Google Scholar 

  • Zasadzinski JA, Chu A, Prud’Homme RK (1986) Transmission electron microscopy of gel network morphology: relating network microstructure to mechanical properties. Macromolecules 19(12):2960–2964

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by Alberta Innovates Bio Solutions and NSERC Bioconversion Network. We thank the National Institute for Nanotechnology and Alberta Innovates-Technology Futures for providing training and research equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaman Boluk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Boluk, Y. Rheological behavior and particle suspension capability of guar gum: sodium tetraborate decahydrate gels containing cellulose nanofibrils. Cellulose 23, 3013–3022 (2016). https://doi.org/10.1007/s10570-016-1015-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1015-x

Keywords

Navigation