Skip to main content
Log in

Fire retardant viscose fiber fabric produced by graft polymerization of phosphorus and nitrogen-containing monomer

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A kind of viscose fiber fabric with permanent flame retardancy has been prepared by grafting polymerization of phosphorus and nitrogen-containing monomer, i.e. 2,2-dimethyl-1,3-propanediol acrylamide methoxyl phosphate (DPAMP) onto viscose fiber fabric (VF-g-DPAMP). The effects of the initiator concentration, DPAMP concentration, temperature, pH and time on grafting polymerization were studied, and the structure of VF-g-DPAMP was determined with Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy. The surface morphology of viscose fiber fabric and VF-g-DPAMP were studied by scanning electron microscope. The thermal property and fire retardant performance of VF-g-DPAMP were assessed by thermogravimetric analysis, limited oxygen index measurements and cone calorimeter test, respectively. The results show that DPAMP has been successfully grafted onto viscose fiber fabric, and VF-g-DPAMP has good char-forming ability and better fire retardancy. The pkHRR and THR of the grafted fabric decrease from 150 to 98 kW/m2 and 5.70 to 1.73 MJ/m2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alimohammadi F, Parvinzadeh M, Shamei A (2012) A novel method for coating of carbon nanotube on cellulose fiber using 1,2,3,4-butanetetracarboxylic acid as a coss-linging agent. Prog Org Coat 74:470–478

    Article  CAS  Google Scholar 

  • Alongi J, Colleoni C, Malucelli G, Rosace G (2012a) Hybrid phosphorus-doped silica architectures derived from a multistep sol–gel processs for improving thermal stability and flame retardancy of cotton fabrics. Polym Degrad Stab 97:1334–1344

    Article  CAS  Google Scholar 

  • Alongi J, Colleoni C, Rosace G, Malucelli G (2012b) Sol–gel derived architectures for enhancing cotton flame retardacy: effect of prue and phosphorus-doped silica phases. Polym Degrad Stab 99:92–98

    Article  Google Scholar 

  • Alongi J, Carletto RA, Di Blasio A, Carosio F, Bosco F, Malucelli G (2013a) Intrinsic intumescent-like flame retardant properties of DNA-treated cotton fabrics. Carbohydr Polym 96:296–304

    Article  CAS  Google Scholar 

  • Alongi J, Colleoni C, Rosace G, Malucelli G (2013b) The role of pre-hydrolysis on multi step sol–gel processes for enhancing the flame retardancy of cotton. Cellulose 20:525–535

    Article  CAS  Google Scholar 

  • Alongi J, Carletto RA, Bosco F, Carosio F, Di Blasio A, Cuttica F, Antonucci V, Giordano M, Malucelli G (2014a) Caseins and hydrophobins as novel green flame retardants for cotton fabrics. Polym Degrad Stab 99:111–117

    Article  CAS  Google Scholar 

  • Alongi J, Di Blasio A, Carosio F, Malucelli G (2014b) UV-cured hybrid organic–inorganic layer by layer assemblies: effect on the flame retardancy of polycarbonate films. Polym Degrad Stab 107:74–81

    Article  CAS  Google Scholar 

  • Alongi J, Milnes J, Malucelli G, Bourbigot S, Kandola B (2014c) Thermal degradation of DNA-treated cotton fabrics under different heating conditions. J Anal Pyrolysis 108:212–221

    Article  CAS  Google Scholar 

  • Alongi J, Tata J, Carosio F, Rosace G, Frache A, Camino G (2015) A comparative analysis of nanoparticle adsorption as fire-protection approach for fabrics. Polymers 7:47–68

    Article  CAS  Google Scholar 

  • Bajaj P, Agrawal AK, Dhand A, Kasturia N (2000) Flame retardation of acrylic fibers: an overview. J Macromol Sci Polym Rev C 40:309–337

    Article  Google Scholar 

  • Bosco F, Carletto RA, Alongi J, Marmo L, Di Blasio A, Malucelli G (2013) Thermal stability and flame resistance of cotton fabrics treated with whey proteins. Carbohydr Polym 94:372–377

    Article  CAS  Google Scholar 

  • Bosco F, Casale A, Mollea C, Terlizzi ME, Gribaudo G, Alongi J, Malucelli G (2015) DNA coatings on cotton fabrics: effect of molecular size and pH on flame retardancy. Surf Coat Technol 272:86–95

    Article  CAS  Google Scholar 

  • Bychkova EV, Rodzivilova IS, Panova LG, Artemenko SE (2002) Adsorption of fire retardant from dilute aqueous solutions onto viscose fiber. J Appl Chem 75:1591–1593

    CAS  Google Scholar 

  • Carosio F, Alongi J (2015) Few durable layers suppress cotton combustion due to the joint combustion of layer by layer assembly and UV-curing. RSC Adv 5:71482–71490

    Article  CAS  Google Scholar 

  • Carosio F, Fontaine G, Alongi J (2015a) Starch-based layer by layer assembly: efficient and sustainable approch to cotton fire protection. ACS Appl Mater Interfaces 7:12158–12167

    Article  CAS  Google Scholar 

  • Carosio F, Negrell-Guirao C, Di Blasio A, Alongi J, David G, Camino G (2015b) Tunable thermal and flame response of phosphonated oligoallylamines layer by layer assemblies on cotton. Carbohydr Polym 115:752–759

    Article  CAS  Google Scholar 

  • Chen S, Zheng QK, Ye GD, Zheng GH (2006) Fire-retardant properties of the viscose rayon containing alkoxycyclotriphosphazene. J Appl Polym Sci 102:698–702

    Article  CAS  Google Scholar 

  • Hebeish A, Kantouch A, Khalil MI, El-Rafie MH (1973) Graft copolymerization of vinyl monomers on modified cottons. VI. Vinyl graft copolymerization initiated by manganese (IV). J Appl Polym Sci 17:2547–2556

    Article  CAS  Google Scholar 

  • Hendrix JE, Drake GL, Barker RH (1972) Pyrolysis and combustion of cellulose. III. Mechanistic basis for the synergism involving organic phosphates and nitrogenous bases. J Appl Polym Sci 16:257–274

    Article  CAS  Google Scholar 

  • Horrocks AR, Nazare S, Masood R, Kandola B, Price D (2011) Surface modification of fabrics for improved flash-fire resistance using atmospheric pressure plasma in the presence of a functionalized clay and polysiloxane. Polym Adv Technol 22:22–29

    Article  CAS  Google Scholar 

  • Hribernik S, Smole MS, Kleinschek KS, Bele M, Jamnik J, Gaberscek M (2007) Flame retardant activity of SiO2-coated regenerated cellulose fibres. Polym Degrad Stab 92:1957–1965

    Article  CAS  Google Scholar 

  • Hu JT, Yao YN, Liu XS, Ao YH, Zhang HX (2009) The application of a novel flame retardant on viscose fiber. Fire Mater 33:145–156

    Article  CAS  Google Scholar 

  • Kandola BK, Horrocks AR, Price D, Coleman GV (1996) Flame-retardant treatments of cellulose and their influence on the mechanism of cellulose pyrolysis. J Macromol Sci Rev Macromol Chem Phys 36:721–794

    Article  Google Scholar 

  • Karacan I, Soy T (2013) Structure and properties of oxidatively stabilized viscose rayon fibers impregnated with boric acid and phosphoric acid prior to carbonization and activation steps. J Mater Sci 48:2009–2021

    Article  CAS  Google Scholar 

  • Keles H, Sacak M (2003) Graft copolymerization of methyl methacrylate onto gelatin using KmnO4–H2SO4 redox system. J Appl Polym Sci 89:2836–2844

    Article  CAS  Google Scholar 

  • Khetarpal RC, Gill KD, Mehta IK, Misra BN (1982) Grafting onto gelatin. II. Grafting copolymerization of ethyl acrylate and methyl methacrylate onto gelatin in the presence of Ce4+ as redox initiator. J Macromol Sci Pure Appl Chem 18:445–454

    Article  Google Scholar 

  • Koutu BB, Sharma RK (1996) Synthesis of a flame-retardant dope additive dithiopyroposphate and its effect on viscose rayon fibres. India J Fibre Text Res 21:140–142

    CAS  Google Scholar 

  • Kumar V, Misra N, Paul J, Dhanawade BR, Varshney L (2014) Uricase-immobilization on radiation grafted polymer support for detection of uric acid using Ag-nanoparticle based optical biosensor. Polymer 55:2652–2660

    Article  CAS  Google Scholar 

  • Lawler TE, Drews MJ, Barker RH (1985) Pyrolysis and combustion of cellulose. VIII. Thermally initiated reactions of phosphonomethyl amide flame retardants. J Appl Polym Sci 30:2263–2277

    Article  CAS  Google Scholar 

  • Lewin M (1999) Synergistic and catalytic effects in flame retardancy of polymeric materials—an overview. J Fire Sci 17:3–19

    Article  CAS  Google Scholar 

  • Liang SY, Neisius NM, Gaan S (2013) Recent developments in flame retardant polymeric coatings. Prog Org Coat 76:1642–1665

    Article  CAS  Google Scholar 

  • Nehra S, Hanumansetty S, Orear EA, Dahiya JB (2014) Enhancement in flame retardancy of cotton fabric by using surfactant-aided polymerization. Polym Degrad Stab 109:137–146

    Article  CAS  Google Scholar 

  • Nooralian Z, Gashti MP, Ebrahimi I (2016) Fabrication of a multifunctional graphene/polyvinylphosphonic acid/cotton nanocomposite via facil spray layer-by-layer assembly. RSC Adv 6:23288–23299

    Article  CAS  Google Scholar 

  • Parvinzadeh M, Almasian A (2013) UV radiation induced flame retardant cellulose fiber by using polyvinylphosphonic acid/carbon nanotube composite coating. Compos B 45:282–289

    Article  Google Scholar 

  • Parvinzadeh M, Alimohammadi F, Shamei A (2012) Preparation of water-repellent cellulose fibers using a polycarboxylic acid/hydrophobic silica nanocoposite coating. Surf Coat Technol 206:3208–3215

    Article  Google Scholar 

  • Parvinzadeh M, Elahi A, Parvinzadeh M (2013a) UV radiation inducing succinic acid/silica-kaolinite network on cellulose fiber to improve the functionality. Compos B 48:158–166

    Article  Google Scholar 

  • Parvinzadeh M, Rashidian R, Almasian A, Zohouri AB (2013b) A novel method for colouration of cotton using clay nano-adsorbent treatment. Pigment Resin Technol 42:175–185

    Article  Google Scholar 

  • Qiao XD, Song L, Bihe Y, Yu B, Shi YQ, Hu Y, Yuen RKK (2014) Organic/inorganic flame retardants containing phosphorus, nitrogen and silicon: preparation and their performance on the flame retardancy of epoxy resins as a novel intumescent flame retardant system. Mater Chem Phys 143:1243–1252

    Article  Google Scholar 

  • Tsafack MJ, Levalois-Grutzmacher J (2006) Flame retardancy of cotton textiles by plasma-induced graft-polymerization (PIGP). Surf Coat Technol 201:2599–2610

    Article  CAS  Google Scholar 

  • Tsafack MJ, Hochart F, Levalois-Grutzmacher J (2004) Polymerization and surface modification by low pressure plasma technique. Eur Phys J Appl Phys 26:215–219

    Article  CAS  Google Scholar 

  • Wang X, Li QS, Di YB, Xing GZ (2012) Preparation and properties of flame-retardant viscose fiber containing phosphazene derivative. Fibers Polym 12:718–723

    Article  Google Scholar 

  • Wang X, Romero MQ, Zhang XQ, Wang R, Wang DY (2015) Intumescent multilayer hybrid coating for flame retardant cotton fabrics based on layer-by-layer assembly and sol–gel process. RSC Adv 5:10647–10655

    Article  CAS  Google Scholar 

  • Wu WD, Yang CQ (2006) Comparison of different reactive organophosphorus flame retardant agents for cotton: part I. The bonding of the flame retardant agents to cotton. Polym Degrad Stab 91:2541–2548

    Article  CAS  Google Scholar 

  • Xu L, Cheng BW, Ren YL, Liu XH (2010a) Facile synthesis and characterization of flame retardant viscose fiber via graft copolymerization and chemical modification. Front Mater Sci China 4:402–406

    Article  Google Scholar 

  • Xu L, Cheng BW, Ren YL, Lu YC (2010b) Synthesis of 5,5-dimethyl-2-phospha-1,3-dioxan-2- yl acryamide methoxy phosphate. Fine Chem 27:893–895

    CAS  Google Scholar 

  • Xue CH, Zhang L, Wei PB, Jia ST (2016) Fabrication of superhydrophobic cotton textiles with flame retardancy. Cellulose 23:1471–1480

    Article  CAS  Google Scholar 

  • Yang ZY, Wang XW, Lei DP, Fei B, Xin JH (2012) A durable flame retardant for cellulosic fabrics. Polym Degrad Stab 97:2467–2472

    Article  CAS  Google Scholar 

  • Zanini S, Riccardi C, Orlandi M, Colombo C, Croccolo F (2008) Plasma-induced graft-polymerisation of ethylene glycol methacrylate phosphate on polyethylene films. Polym Degrad Stab 93:1158–1163

    Article  CAS  Google Scholar 

  • Zhang LM, Chen DQ (2001) Grafting of 2-(dimethylamino) ethyl methacrylate onto potato starch using potasium permanganate/sulfuric acid initiation system. Starch Starke 53:311–316

    Article  CAS  Google Scholar 

  • Zhang B, Zhou YY (2008) Synthesis and characterization of graft copolymers of ethyl acrylate/acrylamide mixtures onto starch. Composite 29:506–510

    Google Scholar 

  • Zhang LM, Gao JP, Tian RC, Yu JG, Wang W (2003) Graft mechanism of acrylonitrile onto starch by potassium permanganate. J Appl Polym Sci 88:146–152

    Article  CAS  Google Scholar 

  • Zhang WC, Li XM, Yang RJ (2011) Pyrolysis and fire behaviour of epoxy resin composites based on a phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS). Polym Degrad Stab 96:1821–1832

    Article  CAS  Google Scholar 

  • Zhao J, Shi Q, Luan SF, Song LJ, Yang HW, Shi HC, Jin J, Li XL, Yin JH, Stagnaro P (2011) Improved biocompatibility and antifouling property of polypropylene on-woven fabric membrane by surface grafting zwitterionic polymer. J Membr Sci 369:5–12

    Article  CAS  Google Scholar 

  • Zheng LC, Dang Z, Zhu CF, Yi XY, Zhang H, Liu CQ (2010) Removal of cadmium (II) from aqueous solution by corn stalk graft copolymers. Bioresour Technol 101:5820–5826

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the National Natural Science Foundation of China (No. 51573134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Lin Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LH., Ren, YL., Wang, XL. et al. Fire retardant viscose fiber fabric produced by graft polymerization of phosphorus and nitrogen-containing monomer. Cellulose 23, 2689–2700 (2016). https://doi.org/10.1007/s10570-016-0970-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-0970-6

Keywords

Navigation