, Volume 23, Issue 4, pp 2689–2700 | Cite as

Fire retardant viscose fiber fabric produced by graft polymerization of phosphorus and nitrogen-containing monomer

  • Li-Huan Wang
  • Yuan-Lin Ren
  • Xiu-Li Wang
  • Jie-Yun Zhao
  • Yue Zhang
  • Qian Zeng
  • Ye-Tong Gu
Original Paper


A kind of viscose fiber fabric with permanent flame retardancy has been prepared by grafting polymerization of phosphorus and nitrogen-containing monomer, i.e. 2,2-dimethyl-1,3-propanediol acrylamide methoxyl phosphate (DPAMP) onto viscose fiber fabric (VF-g-DPAMP). The effects of the initiator concentration, DPAMP concentration, temperature, pH and time on grafting polymerization were studied, and the structure of VF-g-DPAMP was determined with Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy. The surface morphology of viscose fiber fabric and VF-g-DPAMP were studied by scanning electron microscope. The thermal property and fire retardant performance of VF-g-DPAMP were assessed by thermogravimetric analysis, limited oxygen index measurements and cone calorimeter test, respectively. The results show that DPAMP has been successfully grafted onto viscose fiber fabric, and VF-g-DPAMP has good char-forming ability and better fire retardancy. The pkHRR and THR of the grafted fabric decrease from 150 to 98 kW/m2 and 5.70 to 1.73 MJ/m2, respectively.


Viscose fiber fabric Grafting polymerization DPAMP Thermal property Flame retardancy 



We are grateful for the National Natural Science Foundation of China (No. 51573134).


  1. Alimohammadi F, Parvinzadeh M, Shamei A (2012) A novel method for coating of carbon nanotube on cellulose fiber using 1,2,3,4-butanetetracarboxylic acid as a coss-linging agent. Prog Org Coat 74:470–478CrossRefGoogle Scholar
  2. Alongi J, Colleoni C, Malucelli G, Rosace G (2012a) Hybrid phosphorus-doped silica architectures derived from a multistep sol–gel processs for improving thermal stability and flame retardancy of cotton fabrics. Polym Degrad Stab 97:1334–1344CrossRefGoogle Scholar
  3. Alongi J, Colleoni C, Rosace G, Malucelli G (2012b) Sol–gel derived architectures for enhancing cotton flame retardacy: effect of prue and phosphorus-doped silica phases. Polym Degrad Stab 99:92–98CrossRefGoogle Scholar
  4. Alongi J, Carletto RA, Di Blasio A, Carosio F, Bosco F, Malucelli G (2013a) Intrinsic intumescent-like flame retardant properties of DNA-treated cotton fabrics. Carbohydr Polym 96:296–304CrossRefGoogle Scholar
  5. Alongi J, Colleoni C, Rosace G, Malucelli G (2013b) The role of pre-hydrolysis on multi step sol–gel processes for enhancing the flame retardancy of cotton. Cellulose 20:525–535CrossRefGoogle Scholar
  6. Alongi J, Carletto RA, Bosco F, Carosio F, Di Blasio A, Cuttica F, Antonucci V, Giordano M, Malucelli G (2014a) Caseins and hydrophobins as novel green flame retardants for cotton fabrics. Polym Degrad Stab 99:111–117CrossRefGoogle Scholar
  7. Alongi J, Di Blasio A, Carosio F, Malucelli G (2014b) UV-cured hybrid organic–inorganic layer by layer assemblies: effect on the flame retardancy of polycarbonate films. Polym Degrad Stab 107:74–81CrossRefGoogle Scholar
  8. Alongi J, Milnes J, Malucelli G, Bourbigot S, Kandola B (2014c) Thermal degradation of DNA-treated cotton fabrics under different heating conditions. J Anal Pyrolysis 108:212–221CrossRefGoogle Scholar
  9. Alongi J, Tata J, Carosio F, Rosace G, Frache A, Camino G (2015) A comparative analysis of nanoparticle adsorption as fire-protection approach for fabrics. Polymers 7:47–68CrossRefGoogle Scholar
  10. Bajaj P, Agrawal AK, Dhand A, Kasturia N (2000) Flame retardation of acrylic fibers: an overview. J Macromol Sci Polym Rev C 40:309–337CrossRefGoogle Scholar
  11. Bosco F, Carletto RA, Alongi J, Marmo L, Di Blasio A, Malucelli G (2013) Thermal stability and flame resistance of cotton fabrics treated with whey proteins. Carbohydr Polym 94:372–377CrossRefGoogle Scholar
  12. Bosco F, Casale A, Mollea C, Terlizzi ME, Gribaudo G, Alongi J, Malucelli G (2015) DNA coatings on cotton fabrics: effect of molecular size and pH on flame retardancy. Surf Coat Technol 272:86–95CrossRefGoogle Scholar
  13. Bychkova EV, Rodzivilova IS, Panova LG, Artemenko SE (2002) Adsorption of fire retardant from dilute aqueous solutions onto viscose fiber. J Appl Chem 75:1591–1593Google Scholar
  14. Carosio F, Alongi J (2015) Few durable layers suppress cotton combustion due to the joint combustion of layer by layer assembly and UV-curing. RSC Adv 5:71482–71490CrossRefGoogle Scholar
  15. Carosio F, Fontaine G, Alongi J (2015a) Starch-based layer by layer assembly: efficient and sustainable approch to cotton fire protection. ACS Appl Mater Interfaces 7:12158–12167CrossRefGoogle Scholar
  16. Carosio F, Negrell-Guirao C, Di Blasio A, Alongi J, David G, Camino G (2015b) Tunable thermal and flame response of phosphonated oligoallylamines layer by layer assemblies on cotton. Carbohydr Polym 115:752–759CrossRefGoogle Scholar
  17. Chen S, Zheng QK, Ye GD, Zheng GH (2006) Fire-retardant properties of the viscose rayon containing alkoxycyclotriphosphazene. J Appl Polym Sci 102:698–702CrossRefGoogle Scholar
  18. Hebeish A, Kantouch A, Khalil MI, El-Rafie MH (1973) Graft copolymerization of vinyl monomers on modified cottons. VI. Vinyl graft copolymerization initiated by manganese (IV). J Appl Polym Sci 17:2547–2556CrossRefGoogle Scholar
  19. Hendrix JE, Drake GL, Barker RH (1972) Pyrolysis and combustion of cellulose. III. Mechanistic basis for the synergism involving organic phosphates and nitrogenous bases. J Appl Polym Sci 16:257–274CrossRefGoogle Scholar
  20. Horrocks AR, Nazare S, Masood R, Kandola B, Price D (2011) Surface modification of fabrics for improved flash-fire resistance using atmospheric pressure plasma in the presence of a functionalized clay and polysiloxane. Polym Adv Technol 22:22–29CrossRefGoogle Scholar
  21. Hribernik S, Smole MS, Kleinschek KS, Bele M, Jamnik J, Gaberscek M (2007) Flame retardant activity of SiO2-coated regenerated cellulose fibres. Polym Degrad Stab 92:1957–1965CrossRefGoogle Scholar
  22. Hu JT, Yao YN, Liu XS, Ao YH, Zhang HX (2009) The application of a novel flame retardant on viscose fiber. Fire Mater 33:145–156CrossRefGoogle Scholar
  23. Kandola BK, Horrocks AR, Price D, Coleman GV (1996) Flame-retardant treatments of cellulose and their influence on the mechanism of cellulose pyrolysis. J Macromol Sci Rev Macromol Chem Phys 36:721–794CrossRefGoogle Scholar
  24. Karacan I, Soy T (2013) Structure and properties of oxidatively stabilized viscose rayon fibers impregnated with boric acid and phosphoric acid prior to carbonization and activation steps. J Mater Sci 48:2009–2021CrossRefGoogle Scholar
  25. Keles H, Sacak M (2003) Graft copolymerization of methyl methacrylate onto gelatin using KmnO4–H2SO4 redox system. J Appl Polym Sci 89:2836–2844CrossRefGoogle Scholar
  26. Khetarpal RC, Gill KD, Mehta IK, Misra BN (1982) Grafting onto gelatin. II. Grafting copolymerization of ethyl acrylate and methyl methacrylate onto gelatin in the presence of Ce4+ as redox initiator. J Macromol Sci Pure Appl Chem 18:445–454CrossRefGoogle Scholar
  27. Koutu BB, Sharma RK (1996) Synthesis of a flame-retardant dope additive dithiopyroposphate and its effect on viscose rayon fibres. India J Fibre Text Res 21:140–142Google Scholar
  28. Kumar V, Misra N, Paul J, Dhanawade BR, Varshney L (2014) Uricase-immobilization on radiation grafted polymer support for detection of uric acid using Ag-nanoparticle based optical biosensor. Polymer 55:2652–2660CrossRefGoogle Scholar
  29. Lawler TE, Drews MJ, Barker RH (1985) Pyrolysis and combustion of cellulose. VIII. Thermally initiated reactions of phosphonomethyl amide flame retardants. J Appl Polym Sci 30:2263–2277CrossRefGoogle Scholar
  30. Lewin M (1999) Synergistic and catalytic effects in flame retardancy of polymeric materials—an overview. J Fire Sci 17:3–19CrossRefGoogle Scholar
  31. Liang SY, Neisius NM, Gaan S (2013) Recent developments in flame retardant polymeric coatings. Prog Org Coat 76:1642–1665CrossRefGoogle Scholar
  32. Nehra S, Hanumansetty S, Orear EA, Dahiya JB (2014) Enhancement in flame retardancy of cotton fabric by using surfactant-aided polymerization. Polym Degrad Stab 109:137–146CrossRefGoogle Scholar
  33. Nooralian Z, Gashti MP, Ebrahimi I (2016) Fabrication of a multifunctional graphene/polyvinylphosphonic acid/cotton nanocomposite via facil spray layer-by-layer assembly. RSC Adv 6:23288–23299CrossRefGoogle Scholar
  34. Parvinzadeh M, Almasian A (2013) UV radiation induced flame retardant cellulose fiber by using polyvinylphosphonic acid/carbon nanotube composite coating. Compos B 45:282–289CrossRefGoogle Scholar
  35. Parvinzadeh M, Alimohammadi F, Shamei A (2012) Preparation of water-repellent cellulose fibers using a polycarboxylic acid/hydrophobic silica nanocoposite coating. Surf Coat Technol 206:3208–3215CrossRefGoogle Scholar
  36. Parvinzadeh M, Elahi A, Parvinzadeh M (2013a) UV radiation inducing succinic acid/silica-kaolinite network on cellulose fiber to improve the functionality. Compos B 48:158–166CrossRefGoogle Scholar
  37. Parvinzadeh M, Rashidian R, Almasian A, Zohouri AB (2013b) A novel method for colouration of cotton using clay nano-adsorbent treatment. Pigment Resin Technol 42:175–185CrossRefGoogle Scholar
  38. Qiao XD, Song L, Bihe Y, Yu B, Shi YQ, Hu Y, Yuen RKK (2014) Organic/inorganic flame retardants containing phosphorus, nitrogen and silicon: preparation and their performance on the flame retardancy of epoxy resins as a novel intumescent flame retardant system. Mater Chem Phys 143:1243–1252CrossRefGoogle Scholar
  39. Tsafack MJ, Levalois-Grutzmacher J (2006) Flame retardancy of cotton textiles by plasma-induced graft-polymerization (PIGP). Surf Coat Technol 201:2599–2610CrossRefGoogle Scholar
  40. Tsafack MJ, Hochart F, Levalois-Grutzmacher J (2004) Polymerization and surface modification by low pressure plasma technique. Eur Phys J Appl Phys 26:215–219CrossRefGoogle Scholar
  41. Wang X, Li QS, Di YB, Xing GZ (2012) Preparation and properties of flame-retardant viscose fiber containing phosphazene derivative. Fibers Polym 12:718–723CrossRefGoogle Scholar
  42. Wang X, Romero MQ, Zhang XQ, Wang R, Wang DY (2015) Intumescent multilayer hybrid coating for flame retardant cotton fabrics based on layer-by-layer assembly and sol–gel process. RSC Adv 5:10647–10655CrossRefGoogle Scholar
  43. Wu WD, Yang CQ (2006) Comparison of different reactive organophosphorus flame retardant agents for cotton: part I. The bonding of the flame retardant agents to cotton. Polym Degrad Stab 91:2541–2548CrossRefGoogle Scholar
  44. Xu L, Cheng BW, Ren YL, Liu XH (2010a) Facile synthesis and characterization of flame retardant viscose fiber via graft copolymerization and chemical modification. Front Mater Sci China 4:402–406CrossRefGoogle Scholar
  45. Xu L, Cheng BW, Ren YL, Lu YC (2010b) Synthesis of 5,5-dimethyl-2-phospha-1,3-dioxan-2- yl acryamide methoxy phosphate. Fine Chem 27:893–895Google Scholar
  46. Xue CH, Zhang L, Wei PB, Jia ST (2016) Fabrication of superhydrophobic cotton textiles with flame retardancy. Cellulose 23:1471–1480CrossRefGoogle Scholar
  47. Yang ZY, Wang XW, Lei DP, Fei B, Xin JH (2012) A durable flame retardant for cellulosic fabrics. Polym Degrad Stab 97:2467–2472CrossRefGoogle Scholar
  48. Zanini S, Riccardi C, Orlandi M, Colombo C, Croccolo F (2008) Plasma-induced graft-polymerisation of ethylene glycol methacrylate phosphate on polyethylene films. Polym Degrad Stab 93:1158–1163CrossRefGoogle Scholar
  49. Zhang LM, Chen DQ (2001) Grafting of 2-(dimethylamino) ethyl methacrylate onto potato starch using potasium permanganate/sulfuric acid initiation system. Starch Starke 53:311–316CrossRefGoogle Scholar
  50. Zhang B, Zhou YY (2008) Synthesis and characterization of graft copolymers of ethyl acrylate/acrylamide mixtures onto starch. Composite 29:506–510Google Scholar
  51. Zhang LM, Gao JP, Tian RC, Yu JG, Wang W (2003) Graft mechanism of acrylonitrile onto starch by potassium permanganate. J Appl Polym Sci 88:146–152CrossRefGoogle Scholar
  52. Zhang WC, Li XM, Yang RJ (2011) Pyrolysis and fire behaviour of epoxy resin composites based on a phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS). Polym Degrad Stab 96:1821–1832CrossRefGoogle Scholar
  53. Zhao J, Shi Q, Luan SF, Song LJ, Yang HW, Shi HC, Jin J, Li XL, Yin JH, Stagnaro P (2011) Improved biocompatibility and antifouling property of polypropylene on-woven fabric membrane by surface grafting zwitterionic polymer. J Membr Sci 369:5–12CrossRefGoogle Scholar
  54. Zheng LC, Dang Z, Zhu CF, Yi XY, Zhang H, Liu CQ (2010) Removal of cadmium (II) from aqueous solution by corn stalk graft copolymers. Bioresour Technol 101:5820–5826CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Li-Huan Wang
    • 1
  • Yuan-Lin Ren
    • 2
    • 3
  • Xiu-Li Wang
    • 2
  • Jie-Yun Zhao
    • 2
  • Yue Zhang
    • 2
  • Qian Zeng
    • 2
  • Ye-Tong Gu
    • 2
  1. 1.School of ScienceTianjin Polytechnic UniversityTianjinChina
  2. 2.Department of TextileTianjin Polytechnic UniversityTianjinChina
  3. 3.Key Laboratory of Advanced Textile Composite, Ministry of EducationTianjin Polytechnic UniversityTianjinChina

Personalised recommendations