, Volume 23, Issue 4, pp 2273–2289 | Cite as

Application of chitosan and its derivatives for solid-phase extraction of metal and metalloid ions: a mini-review

  • Yu. A. Azarova
  • A. V. Pestov
  • S. Yu. Bratskaya
Review Paper


Here we review chitosan-based materials for solid-phase extraction of metal and metalloid ions prior to their determination by atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry, mass spectrometry, and some other spectrometric techniques. We show that nearly zero affinity of chitosan and its derivatives to alkali and alkali-earth metal ions is very beneficial for separation of analytes from the salt matrix, which is always present in natural waters, waste streams, and geological samples and interferes with analytical signals. Applicability of chitosan to selective recovery of different metal and metalloid ions can be significantly improved via functionalization with N-, S-, and O-containing groups imparting chitosan with additional electron donor atoms and capability to form stable five- and six-membered chelate rings with metal ions. Among most promising materials for analytical preconcentration, we discussed chitosan-based composites; carboxyalkyl chitosans; chitosan derivatives containing residues of aminoacids, iminodiacetic acid, ethylenediaminetetraacetic and diethylenetriaminepentaacetic acids; chitosans modified with aliphatic and aromatic amines, heterocyclic fragments (pyridyl, imidazole), and crown ethers. We have shown that most chitosan derivatives provide only group selectivity toward metal ions; however, optimization of recovery conditions allows metals and metalloids speciation and efficient separation of noble and transition metal ions.


Chitosan Chitosan derivatives Solid-phase extraction Selectivity Analysis 



Financial support from Russian Science Foundation (Project No 14-13-00136) is gratefully acknowledged.


  1. Arrascue ML, Garcia HM, Horna O, Guibal E (2003) Gold sorption on chitosan derivatives. Hydrometallurgy 71:191–200. doi: 10.1016/S0304-386X(03)00156-7 CrossRefGoogle Scholar
  2. Azarova YA, Pestov AV, Ustinov AY, Bratskaya SY (2015) Application of chitosan and its N-heterocyclic derivatives for preconcentration of noble metal ions and their determination using atomic absorption spectrometry. Carbohydr Polym 134:680–686. doi: 10.1016/j.carbpol.2015.07.086 CrossRefGoogle Scholar
  3. Baba Y, Masaaki K, Kawano Y (1994) Selective adsorption of copper(II) over iron(III) on chitosan derivative introducing pyridyl group. Chem Lett 23:2389–2392CrossRefGoogle Scholar
  4. Baba Y, Kawano Y, Hirakawa H (1996) Highly selective adsorption resins. 1. Preparation of chitosan derivatives containing 2-pyridylmethyl, 2-thienylmethyl, and 3-(methylthio)propyl groups and their selective adsorption of precious metal. Bull Chem Soc Jpn 69:1255–1260CrossRefGoogle Scholar
  5. Baba Y, Masaaki K, Kawano Y (1998) Synthesis of a chitosan derivative recognizing planar metal ion and its selective adsorption equilibria of copper (I) over iron (III) 1. React Funct Polym 36:167–172CrossRefGoogle Scholar
  6. Baba Y, Noma H, Nakayama R, Matsushita Y (2002) Preparation of chitosan derivatives containing methylthiocarbamoyl and phenylthiocarbamoyl groups and their selective adsorption of copper (II) and iron (III). Anal Sci 18:359–361CrossRefGoogle Scholar
  7. Bratskaya SY, Ustinov AY, Azarova YA, Pestov AV (2011) Thiocarbamoyl chitosan: synthesis, characterization and sorption of Au(III), Pt(IV), and Pd(II). Carbohydr Polym 85:854–861. doi: 10.1016/j.carbpol.2011.04.008 CrossRefGoogle Scholar
  8. Bratskaya SY, Azarova YA, Matochkina EG et al (2012) N-(2-(2-pyridyl)ethyl)chitosan: synthesis, characterization and sorption properties. Carbohydr Polym 87:869–875. doi: 10.1016/j.carbpol.2011.08.081 CrossRefGoogle Scholar
  9. Butewicz A, Gavilan KC, Pestov AV et al (2010) Palladium and platinum sorption on a thiocarbamoyl-derivative of chitosan. J Appl Polym Sci 116:3318–3330. doi: 10.1002/app Google Scholar
  10. Cárdenas G, Orlando P, Edelio T (2001) Synthesis and applications of chitosan mercaptanes as heavy metal retention agent. Int J Biol Macromol 28:167–174CrossRefGoogle Scholar
  11. Carletto JS, Pietro Roux KCD, Maltez HF et al (2008) Use of 8-hydroxyquinoline-chitosan chelating resin in an automated on-line preconcentration system for determination of zinc(II) by F AAS. J Hazard Mater 157:88–93. doi: 10.1016/j.jhazmat.2007.12.083 CrossRefGoogle Scholar
  12. Chang Q, Zhang M, Wang J (2009) Removal of Cu2+ and turbidity from wastewater by mercaptoacetyl chitosan. J Hazard Mater 169:621–625. doi: 10.1016/j.jhazmat.2009.03.144 CrossRefGoogle Scholar
  13. Chassary P, Vincent T, Sanchez Marcano J et al (2005) Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. Hydrometallurgy 76:131–147. doi: 10.1016/j.hydromet.2004.10.004 CrossRefGoogle Scholar
  14. Cui C, He M, Chen B, Hu B (2014) Chitosan modified magnetic nanoparticles based solid phase extraction combined with ICP-OES for the speciation of Cr(III) and Cr(VI). Anal Methods 6:8577–8583. doi: 10.1039/C4AY01609B CrossRefGoogle Scholar
  15. Dai J, Ren FL, Tao CY, Bai Y (2011) Synthesis of cross-linked chitosan and application to adsorption and speciation of Se (VI) and Se (IV) in environmental water samples by inductively coupled plasma optical emission spectrometry. Int J Mol Sci 12:4009–4020. doi: 10.3390/ijms12064009 CrossRefGoogle Scholar
  16. Dai B, Cao M, Fang G et al (2012) Schiff base-chitosan grafted multiwalled carbon nanotubes as a novel solid-phase extraction adsorbent for determination of heavy metal by ICP-MS. J Hazard Mater 219–220:103–110. doi: 10.1016/j.jhazmat.2012.03.065 CrossRefGoogle Scholar
  17. Dhakal RP, Oshima T, Baba Y (2008) Planarity-recognition enhancement of N-(2-pyridylmethyl)chitosan by imprinting planar metal ions. React Funct Polym 68:1549–1556. doi: 10.1016/j.reactfunctpolym.2008.08.008 CrossRefGoogle Scholar
  18. Ding S, Zhang X, Feng X, Wang Y, Ma S, Peng Q, Zhang W (2006) Synthesis of N, N’-diallyldibenzo 18-crown-6 crown ether crosslinked chitosan and their adsorption properties for metal ions. React Funct Polym 66:357–363CrossRefGoogle Scholar
  19. Ding P, Huang KL, Li GY, Zeng WW (2007) Mechanisms and kinetics of chelating reaction between novel chitosan derivatives and Zn(II). J Hazard Mater 146:58–64. doi: 10.1016/j.jhazmat.2006.11.061 CrossRefGoogle Scholar
  20. Donia AM, Atia AA, Elwakeel KZ (2007) Recovery of gold(III) and silver(I) on a chemically modified chitosan with magnetic properties. Hydrometallurgy 87:197–206. doi: 10.1016/j.hydromet.2007.03.007 CrossRefGoogle Scholar
  21. El-Sherbiny IM (2009) Synthesis, characterization and metal uptake capacity of a new carboxymethyl chitosan derivative. Eur Polym J 45:199–210. doi: 10.1016/j.eurpolymj.2008.10.042 CrossRefGoogle Scholar
  22. Emara AAA, Tawab MA, El-ghamry MA, Elsabee MZ (2011) Metal uptake by chitosan derivatives and structure studies of the polymer metal complexes. Carbohydr Polym 83:192–202. doi: 10.1016/j.carbpol.2010.07.040 CrossRefGoogle Scholar
  23. Fan L, Luo C, Lv Z et al (2011) Removal of Ag+ from water environment using a novel magnetic thiourea-chitosan imprinted Ag+. J Hazard Mater 194:193–201. doi: 10.1016/j.jhazmat.2011.07.080 CrossRefGoogle Scholar
  24. Fu X, Liu H, Liu Y, Liu Y (2013) Application of chitosan and its derivatives in analytical chemistry: a mini-review. J Carbohydr Chem 32:463–474. doi: 10.1080/07328303.2013.863318 CrossRefGoogle Scholar
  25. Gao Y, Lee K-H, Oshima M, Motomizu S (2000) Adsorption behavior of metal ions on cross-linked chitosan and the determination of oxoanions after pretreatment with a chitosan column. Anal Sci 16:1303–1308. doi: 10.2116/analsci.16.1303 CrossRefGoogle Scholar
  26. Gao Y, Oshita K, Lee K-H et al (2002) Development of column-pretreatment chelating resins for matrix elimination/multi-element determination by inductively coupled plasma-mass spectrometry. Analyst 127:1713–1719. doi: 10.1039/b208341h CrossRefGoogle Scholar
  27. Gavilan KC, Pestov AV, Garcia HM et al (2009) Mercury sorption on a thiocarbamoyl derivative of chitosan. J Hazard Mater 165:415–426. doi: 10.1016/j.jhazmat.2008.10.005 CrossRefGoogle Scholar
  28. Ge H, Huang S (2010) Microwave preparation and adsorption properties of EDTA-modified cross-linked chitosan. J Appl Polym Sci 115:514–519. doi: 10.1002/app CrossRefGoogle Scholar
  29. Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38:43–74. doi: 10.1016/j.seppur.2003.10.004 CrossRefGoogle Scholar
  30. Guibal E, Vincent T, Mendoza RN (2000) Synthesis and characterization of a thiourea derivative of chitosan for platinum recovery. J Appl Polym Sci 75:119–134CrossRefGoogle Scholar
  31. Guibal E, Von Offenberg Sweeney N, Vincent T, Tobin JM (2002) Sulfur derivatives of chitosan for palladium sorption. React Funct Polym 50:149–163CrossRefGoogle Scholar
  32. Hakim L, Sabarudin A, Oshima M, Motomizu S (2007) Synthesis of novel chitosan resin derivatized with serine diacetic acid moiety and its application to on-line collection/concentration of trace elements and their determination using inductively coupled plasma-atomic emission spectrometry. Anal Chim Acta 588:73–81. doi: 10.1016/j.aca.2007.01.066 CrossRefGoogle Scholar
  33. Hakim L, Sabarudin A, Oshita K et al (2008) Synthesis of cross-linked chitosan functionalized with threonine moiety and its application to on-line collection/concentration and determination of Mo, V and Cu. Talanta 74:977–985. doi: 10.1016/j.talanta.2007.08.012 CrossRefGoogle Scholar
  34. He J-C, Zhou F-Q, Mao Y-F et al (2013) Preconcentration of trace cadmium (II) and copper (II) in environmental water using a column packed with modified silica gel-chitosan prior to flame atomic absorption spectrometry determination. Anal Lett 46:1430–1441. doi: 10.1080/00032719.2013.764533 CrossRefGoogle Scholar
  35. Hosoba M, Oshita K, Katarina RK et al (2009) Synthesis of novel chitosan resin possessing histidine moiety and its application to the determination of trace silver by ICP-AES coupled with triplet automated-pretreatment system. Anal Chim Acta 639:51–56. doi: 10.1016/j.aca.2009.02.050 CrossRefGoogle Scholar
  36. Hu D, Cui Y, Dong X, Fang Y (2001) Studies on CoSalen immobilized onto N- (4-pyridylmethylidene)–chitosan. React Funct Polym 48:201–207CrossRefGoogle Scholar
  37. Hu D, Fang Y, Gao G, Wang M (2006) Studies on CoSalen immobilized onto N-(4-methylimidazole)-chitosan. J Appl Polym Sci 101:2431–2436. doi: 10.1002/app.24019 CrossRefGoogle Scholar
  38. Humeres E, De Souza EP, Debacher NA, Aliev AE (2002) Synthesis and coordinating ability of chitosan dithiocarbamate and analogs towards Cu(II) ions. J Phys Org Chem 15:852–857. doi: 10.1002/poc.559 CrossRefGoogle Scholar
  39. Inoue K, Yoshizuka K, Ohto K (1999) Adsorptive separation of some metal ions by complexing agent types of chemically modified chitosan. Anal Chim Acta 388:209–218CrossRefGoogle Scholar
  40. Julkapli NM, Ahmad Z, Akil HM (2010) Preparation and characterization of 1,2,4,5-benzenetetra carboxylic-chitosan. e-Polymers 10:841–857Google Scholar
  41. Kannamba B, Reddy KL, AppaRao BV (2010) Removal of Cu(II) from aqueous solutions using chemically modified chitosan. J Hazard Mater 175:939–948. doi: 10.1016/j.jhazmat.2009.10.098 CrossRefGoogle Scholar
  42. Katarina RK, Takayanagi T, Oshima M, Motomizu S (2006) Synthesis of a chitosan-based chelating resin and its application to the selective concentration and ultratrace determination of silver in environmental water samples. Anal Chim Acta 558:246–253. doi: 10.1016/j.aca.2005.11.010 CrossRefGoogle Scholar
  43. Katarina RK, Oshima M, Motomizu S (2009) High-capacity chitosan-based chelating resin for on-line collection of transition and rare-earth metals prior to inductively coupled plasma-atomic emission spectrometry measurement. Talanta 79:1252–1259. doi: 10.1016/j.talanta.2009.05.030 CrossRefGoogle Scholar
  44. Kawamura Y, Mitsuhashi M, Tanibe H, Yoshida H (1993) Adsorption of Metal Ions on Polyaminated Highly Porous Chitosan Chelating Resin. Ind Eng Chem Res 32:386–391CrossRefGoogle Scholar
  45. Khan A, Badshah S, Airoldi C (2011) Dithiocarbamated chitosan as a potent biopolymer for toxic cation remediation. Colloids Surf B Biointerfaces 87:88–95. doi: 10.1016/j.colsurfb.2011.05.006 CrossRefGoogle Scholar
  46. Kumagai H, Inoue Y, Yokoyama T et al (1998) Chromatographic selectivity of rare earth elements on iminodiacetate-type chelating resins having spacer arms of different lengths: importance of steric flexibility of functional group in a polymer chelating resin. Anal Chem 70:4070–4073. doi: 10.1021/ac980334v CrossRefGoogle Scholar
  47. Lee K, Oshima M, Takayanagi T, Motomizu S (2000) Simultaneous determination of trace elements in river-water samples by ICP-MS in combination with a discrete microsampling technique after enrichment with a chitosan-based chelating resin. Anal Sci 16:731–738CrossRefGoogle Scholar
  48. Leonhardt SES, Stolle A, Ondruschka B et al (2010) Chitosan as a support for heterogeneous Pd catalysts in liquid phase catalysis. Appl Catal A Gen 379:30–37. doi: 10.1016/j.apcata.2010.02.029 CrossRefGoogle Scholar
  49. Li F, Bao C, Zhang J et al (2010) Sorption technique for the determination of trace palladium in geological samples using atomic absorption spectrometry. Anal Lett 43:1857–1868. doi: 10.1080/00032710903502165 CrossRefGoogle Scholar
  50. Lü H, An H, Wang X, Xie Z (2013) Preparation of carboxymethyl chitosan-graft-β-cyclodextrin modified silica gel and preconcentration of cadmium. Int J Biol Macromol 61:359–362. doi: 10.1016/j.ijbiomac.2013.07.023 CrossRefGoogle Scholar
  51. Minamisawa H, Arai N, Okutani T (1999) Electrothermal atomic absorption spectrometric determination of copper (II) using a tungsten metal furnace after preconcentration onto chitosan. Anal Sci 15:269–275CrossRefGoogle Scholar
  52. Minamisawa H, Minamisawa M, Ando M et al (2006) Preconcentration of trace amounts of Cu(II) into the liquid—liquid interface with chitosan and its determination by graphite furnace atomic absorption spectrometry. Bunseki Kagaku 55:573–578CrossRefGoogle Scholar
  53. Mladenova E, Karadjova I, Tsalev DL (2012) Solid-phase extraction in the determination of gold, palladium, and platinum. J Sep Sci 35:1249–1265. doi: 10.1002/jssc.201100885 CrossRefGoogle Scholar
  54. Moghimi A (2014) Separation and extraction of Co(II) using magnetic chitosan nanoparticles grafted with β-cyclodextrin and determination by FAAS. Russ J Phys Chem A 88:2157–2164. doi: 10.1134/S0036024414120024 CrossRefGoogle Scholar
  55. Muzzarelli RAA, Mattioli-Belmonte M, Tietz C et al (1994) Stimulatory effect on bone formation exerted by a modified chitosan. Biomaterials 15:1075–1081CrossRefGoogle Scholar
  56. Ninomiya T, Oshita K, Oshima M, Motomizu S (2003) Synthesis of dithiocarbamate-chitosan resin and its adsorption behavior for trace metals. Bunseki Kagaku 52:811–817CrossRefGoogle Scholar
  57. Oshita K (2004) Synthesis of novel solid materials for the separation of metals by derivatizing biomass with functional moieties and their application to analytical chemistry. Bunseki Kagaku 53:187–188Google Scholar
  58. Oshita K, Motomizu S (2008) Development of chelating resins and their ability of collection and separation for metal ions. Bunseki Kagaku 57:291–311. doi: 10.2116/bunsekikagaku.57.291 CrossRefGoogle Scholar
  59. Oshita K, Seo K, Sabarudin A et al (2008) Synthesis of chitosan resin possessing a phenylarsonic acid moiety for collection/concentration of uranium and its determination by ICP-AES. Anal Bioanal Chem 390:1927–1932. doi: 10.1007/s00216-008-1931-1 CrossRefGoogle Scholar
  60. Owawa H, Shimiza T, Uehara N (2007) Preconcentration of heavy metal ions with thermo-sensitive chitosan and atomic absorption spectrometric determination of trace cadmium in water. Bunseki Kagaku 56:721–728CrossRefGoogle Scholar
  61. Park S-I, Kwak IS, Won SW, Yun Y-S (2013) Glutaraldehyde-crosslinked chitosan beads for sorptive separation of Au(III) and Pd(II): opening a way to design reduction-coupled selectivity-tunable sorbents for separation of precious metals. J Hazard Mater 248–249:211–218. doi: 10.1016/j.jhazmat.2013.01.013 CrossRefGoogle Scholar
  62. Pestov A, Bratskaya S (2016) Chitosan and its derivatives as highly efficient polymer ligands. Molecules. doi: 10.3390/molecules21030330 Google Scholar
  63. Pestov AV, Koryakova OV, Leonidov II, Yatluk YG (2010) Gel-synthesis, structure, and properties of sulfur-containing chitosan derivatives. Russ J Appl Chem 83:787–794. doi: 10.1134/S1070427210050058 CrossRefGoogle Scholar
  64. Pestov AV, Bratskaya SY, Azarova YA, Yatluk YG (2012) Imidazole-containing chitosan derivative: a new synthetic approach and sorption properties. Russ Chem Bull 61:1959–1964CrossRefGoogle Scholar
  65. Repo E, Warchol JK, Kurniawan TA, Sillanpää MET (2010) Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-modified chitosan: kinetic and equilibrium modeling. Chem Eng J 161:73–82. doi: 10.1016/j.cej.2010.04.030 CrossRefGoogle Scholar
  66. Rodrigues CA, Laranjeira MCM, Stadler E, Drago V (2000) Preparation and characterization of the pentacyanoferrate (II) on the surface of N-(4-pyridilmethylidene) chitosan. Carbohydr Polym 42:311–314CrossRefGoogle Scholar
  67. Sabarudin A, Oshita K, Oshima M, Motomizu S (2005a) Synthesis of chitosan resin possessing 3,4-diamino benzoic acid moiety for the collection/concentration of arsenic and selenium in water samples and their measurement by inductively coupled plasma-mass spectrometry. Anal Chim Acta 542:207–215. doi: 10.1016/j.aca.2005.03.070 CrossRefGoogle Scholar
  68. Sabarudin A, Oshita K, Oshima M, Motomizu S (2005b) Synthesis of cross-linked chitosan possessing N-methyl-d-glucamine moiety (CCTS-NMDG) for adsorption/concentration of boron in water samples and its accurate measurement by ICP-MS and ICP-AES. Talanta 66:136–144. doi: 10.1016/j.talanta.2004.10.011 CrossRefGoogle Scholar
  69. Sabarudin A, Oshima M, Noguchi O, Motomizu S (2007a) Functionalization of chitosan with 3-nitro-4-amino benzoic acid moiety and its application to the collection/concentration of molybdenum in environmental water samples. Talanta 73:831–837CrossRefGoogle Scholar
  70. Sabarudin A, Oshima M, Takayanagi T et al (2007b) Functionalization of chitosan with 3,4-dihydroxybenzoic acid for the adsorption/collection of uranium in water samples and its determination by inductively coupled plasma-mass spectrometry. Anal Chim Acta 581:214–220. doi: 10.1016/j.aca.2006.08.024 CrossRefGoogle Scholar
  71. Sabarudin A, Umemura T, Motomizu S (2011) Chitosan functionalized with di-2-propanolamine: its application as solid phase extractant for the determination of germanium in water samples by ICP-MS. Microchem J 99:34–39. doi: 10.1016/j.microc.2011.03.004 CrossRefGoogle Scholar
  72. Shinde RN, Pandey AK, Acharya R et al (2013) Chitosan-transition metal ions complexes for selective arsenic(V) preconcentration. Water Res 47:3497–3506. doi: 10.1016/j.watres.2013.03.059 CrossRefGoogle Scholar
  73. Skorik YA, Gomes CAR, Podberezskaya NV et al (2005) Complexation models of N- (2-carboxyethyl) chitosans with copper(II) ions. Biomacromolecules 6:189–195CrossRefGoogle Scholar
  74. Smith RM, Martell AE (1989) Critical stability constants, vol 6. Springer, USGoogle Scholar
  75. Sokovnin SYu, Balezin ME, Puzyrev IS, Pestov AV, Yatluk YuG (2009) Sorbents based on N-(-2-carboxyethyl) chitosan cross-linked by nanosecond electron beams. Russ Chem Bull Int Ed 58:1172–1179CrossRefGoogle Scholar
  76. Sun S, Wang A (2006a) Adsorption kinetics of Cu(II) ions using N, O-carboxymethyl-chitosan. J Hazard Mater B 131:103–111. doi: 10.1016/j.jhazmat.2005.09.012 CrossRefGoogle Scholar
  77. Sun S, Wang A (2006b) Adsorption properties and mechanism of cross-linked carboxymethyl-chitosan resin with Zn(II) as template ion. React Funct Polym 66:819–826. doi: 10.1016/j.reactfunctpolym.2005.11.008 CrossRefGoogle Scholar
  78. Sun S, Wang A (2006c) Adsorption properties of N-succinyl-chitosan and cross-linked N-succinyl-chitosan resin with Pb(II) as template ions. Sep Purif Technol 51:409–415. doi: 10.1016/j.seppur.2006.03.004 CrossRefGoogle Scholar
  79. Sun JM, Xu P, Sun HW (2004) Determination of Cu(II), Zn(II), Co(II), Ni(II), Pb(II) and Cd(II) by chitosan separation-flame atomic absorption spectrometry. Chin J Anal Chem 32:1356–1358Google Scholar
  80. Suneetha Y, Kumar BN, Harinath Y et al (2012) Functionalization of cross linked chitosan with 2-aminopyridine-3-carboxylic acid for solid phase extraction of cadmium and zinc ions and their determination by atomic absorption spectrometry. Microchim Acta 176:169–176. doi: 10.1007/s00604-011-0707-z CrossRefGoogle Scholar
  81. Tong J, Li Z, Xia C (2005) Highly efficient catalysts of chitosan-Schiff base Co(II) and Pd(II) complexes for aerobic oxidation of cyclohexane in the absence of reductants and solvents. J Mol Catal A Chem 231:197–203. doi: 10.1016/j.molcata.2005.01.011 CrossRefGoogle Scholar
  82. Wan Ibrahim WA, Abd Ali LI, Sulaiman A et al (2014) Application of solid-phase extraction for trace elements in environmental and biological samples: a review. Crit Rev Anal Chem 44:233–254. doi: 10.1080/10408347.2013.855607 CrossRefGoogle Scholar
  83. Wan L, Wang Y, Qian S (2002) Study on the adsorption properties of novel crown ether crosslinked chitosan for metal ions. J Appl Polym Sci 84:29–34. doi: 10.1002/app.10180 CrossRefGoogle Scholar
  84. Wang M, Xu L, Peng J et al (2009) Adsorption and desorption of Sr(II) ions in the gels based on polysaccharide derivates. J Hazard Mater 171:820–826. doi: 10.1016/j.jhazmat.2009.06.071 CrossRefGoogle Scholar
  85. Wang H, Bao C, Li F et al (2010a) Preparation and application of 4-amino-4′-nitro azobenzene modified chitosan as a selective adsorbent for the determination of Au(III) and Pd(II). Microchim Acta 168:99–105. doi: 10.1007/s00604-009-0265-9 CrossRefGoogle Scholar
  86. Wang L, Xing R, Liu S et al (2010b) Recovery of silver (I) using a thiourea-modified chitosan resin. J Hazard Mater 180:577–582. doi: 10.1016/j.jhazmat.2010.04.072 CrossRefGoogle Scholar
  87. Wang H, Li C, Bao C et al (2011) Adsorption and determination of Pd(II) and Pt(IV) onto 3′-Nitro-4-amino azobenzene modified chitosan. J Chem Eng Data 56:4203–4207CrossRefGoogle Scholar
  88. Wu Y, Jiang Y, Han D et al (2007) Speciation of chromium in water using crosslinked chitosan-bound FeC nanoparticles as solid-phase extractant, and determination by flame atomic absorption spectrometry. Microchim Acta 159:333–339. doi: 10.1007/s00604-007-0772-5 CrossRefGoogle Scholar
  89. Xiong C, Pi L, Chen X et al (2013) Adsorption behavior of Hg2+ in aqueous solutions on a novel chelating cross-linked chitosan microsphere. Carbohydr Polym 98:1222–1228. doi: 10.1016/j.carbpol.2013.07.034 CrossRefGoogle Scholar
  90. Yan H, Dai J, Yang Z et al (2011) Enhanced and selective adsorption of copper(II) ions on surface carboxymethylated chitosan hydrogel beads. Chem Eng J 174:586–594. doi: 10.1016/j.cej.2011.09.064 CrossRefGoogle Scholar
  91. Yang Z, Cheng S (2003) Synthesis and characterization of macrocyclic polyamine derivative of chitosan. J Appl Polym Sci 89:924–929CrossRefGoogle Scholar
  92. Yang Z, Li J (2002) Preparation and characterization of dihydroxyl mesocyclic diamine derivative of chitosan. J Appl Polym Sci 86:2677–2681. doi: 10.1002/app.11214 CrossRefGoogle Scholar
  93. Yang Z, Yang Y (2001) Synthesis, characterization, and adsorption properties of chitosan azacrown ethers bearing hydroxyl group. J Appl Polym Sci 81:1793–1798CrossRefGoogle Scholar
  94. Yang Z, Wang Y, Tang Y (1999) Preparation and adsorption properties of metal ions of crosslinked chitosan azacrown ethers. J Appl Polym Sci 74:3053–3058CrossRefGoogle Scholar
  95. Yang Z, Yuan Y, Wang Y (2000) Synthesis and evaluation of chitosan aryl azacrown ethers as adsorbents for metal ions. J Appl Polym Sci 77:3093–3098CrossRefGoogle Scholar
  96. Zhang X, Ding S, Wang Y et al (2006) Synthesis and adsorption properties of metal ions of novel azacrown ether crosslinked chitosan. J Appl Polym Sci 100:2705–2709. doi: 10.1002/app.22941 CrossRefGoogle Scholar
  97. Zhou L, Liu J, Liu Z (2009) Adsorption of platinum(IV) and palladium(II) from aqueous solution by thiourea-modified chitosan microspheres. J Hazard Mater 172:439–446. doi: 10.1016/j.jhazmat.2009.07.030 CrossRefGoogle Scholar
  98. Zougagh M, Cano Pavón JM, Garcia de Torres A (2005) Chelating sorbents based on silica gel and their application in atomic spectrometry. Anal Bioanal Chem 381:1103–1113. doi: 10.1007/s00216-004-3022-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Yu. A. Azarova
    • 1
  • A. V. Pestov
    • 1
    • 2
  • S. Yu. Bratskaya
    • 1
  1. 1.Institute of ChemistryFar-Eastern Branch of RASVladivostokRussia
  2. 2.I. Ya. Postovsky Institute of Organic SynthesisUral Branch of RASYekaterinburgRussia

Personalised recommendations