, Volume 23, Issue 3, pp 1803–1812 | Cite as

Sago seed shell: determination of the composition and isolation of microcrystalline cellulose (MCC)

Original Paper


Sago seed shells are agricultural wastes that are discarded after taking the pith. The composition of sago seed shells has been determined by using standard methods. Parameters such as extractives (ASTM D1107-96), Klason lignin (ASTM D1106-96), holocellulose (Wise et al. in Paper Trade J 122(2):35–42, 1946), α-cellulose (ASTM D 1103-60), hemicellulose (by difference) and ash content (T 211 om 02) were determined. The components were characterised using FTIR, TGA, XRD, SEM, TEM and AFM. The detailed spectral, thermal, XRD and SEM analyses show the presence Klason lignin, holocellulose and α-cellulose. α-Cellulose has been converted into microcrystalline cellulose (MCC) by acid hydrolysis. MCC was also characterised by using FTIR, TGA, XRD, SEM, TEM and AFM. Frequencies of the FTIR spectrum are similar to those of α-cellulose, and the TGA data reveal increased decomposition temperatures for MCC and well as a well defined TGA curve, indicating the increased structural order or crystallinity. This is further supported by XRD. SEM, TEM and AFM results, which reveal the microstructural behavior of isolated MCC.


Sago seed shells Klason lignin Holocellulose α-Cellulose MCC 


  1. Achor M, Oyeniyi YJ, Yahaya A (2014) Extraction and characterisation of microcrystalline cellulose obtained from the back of the fruit of Lageriana siceraria (water gourd). J Appl Pharm Sci 4(01):057–060Google Scholar
  2. Bochek AM, Shevchuk IL, Lavrentev VN (2003) Fabrication of microcrystalline and powdered cellulose from short flax fiber and flax straw. Rus J Appl Chem 76(10):1679–1682CrossRefGoogle Scholar
  3. Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2):171–180. doi: 10.1007/s10570-006-9061-4 CrossRefGoogle Scholar
  4. Boonmee A (2012) Hydrolysis of various Thai agricultural biomasses using the crude enzyme from Aspergillus aculeatus Iizuka FR60 isolated from soil. Braz J Microbiol 43(2):456–466. doi: 10.1590/S1517-83822012000200005 CrossRefGoogle Scholar
  5. Carrier M, Loppinet-Serani A, Denux D, Lasnier J-M, Hama-Pichavant F, Cansell F, Aymonier C (2011) Thermogravimetric analysis as a new method to determine the Lignocellulosic composition of bio mass. Biomass Bioenergy 35:298–307. doi: 10.1016/j.biombioe.2010.08.067 CrossRefGoogle Scholar
  6. Coutinho FMB, Costa THS, Carvalho DL (1997) Polypropylene-wood fibre composites: effect of treatment and mixing conditions on mechanical properties. J Appl Polym Sci 65:1227–1235CrossRefGoogle Scholar
  7. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33. doi: 10.1007/s10853-009-3874-0 CrossRefGoogle Scholar
  8. El-Sakhawy M, Hassan ML (2007) Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydr Polym 67:1–10. doi: 10.1016/j.carbpol.2006.04.009 CrossRefGoogle Scholar
  9. Fang JM, Sun RC, Tomkinson J (2000) Isolation and characterization of hemicelluloses and cellulose from rye straw by alkaline peroxide extraction. Cellulose 7:87–107CrossRefGoogle Scholar
  10. Gaonkar SM, Kulkarni PR (1987) Improved method for the preparation of microcrystalline cellulose from water hyacinth. Text Dye Print 20(26):19–22Google Scholar
  11. Gaonkar SM, Kulkarni PR (1989) Microcrystalline cellulose from coconut shells. Acta Polym 40(4):292–294CrossRefGoogle Scholar
  12. Geethamma VG, Joseph R, Thomas S (1995) Short coir fiber-reinforced natural rubber composites: effects of fiber length, orientation and alkali treatment. J Appl Polym Sci 55:583–594. doi: 10.1002/app.1995.070550405 CrossRefGoogle Scholar
  13. Haque MM, Hasan MM, Saiful Islam MM, Ershad Ali M (2009) Physico-mechanical properties of chemically treated palm and coir fibre reinforced polypropylene composites. Biores Technol 100:4903–4906. doi: 10.1016/j.biortech.2009.04.072 CrossRefGoogle Scholar
  14. Herrera-Franco PJ, Valadez-González AA (2005) Study of the mechanical properties of short natural-fiber reinforced composites. Compos B Eng 36:597–608. doi: 10.1016/j.compositesb.2005.04.001 CrossRefGoogle Scholar
  15. Ismail H, Othman N, Komethi M (2012) Curing characteristics and mechanical properties of Rattan powder filled natural rubber composites as a function of filler loading and silane coupling agent. J Appl Polym Sci 123:2803–2811. doi: 10.1002/app.34730 CrossRefGoogle Scholar
  16. Jain JK, Dixit VK, Varma KC (1983) Preparation of microcrystalline cellulose from cereal straw and its evaluation as a tablet excipient. Indian J Pharm Sci 45:83–85Google Scholar
  17. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364. doi: 10.1016/j.carbpol.2007.05.040 CrossRefGoogle Scholar
  18. Joseph PV, Joseph K, Thomas S, Pillai CKS, Prasad VS, Groeninckx G, Sarkissova M (2003) The thermal and crystallization studies of short sisal fibre reinforced polypropylene composites. Compos A 34:253–266CrossRefGoogle Scholar
  19. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi: 10.1002/anie.200460587 CrossRefGoogle Scholar
  20. Kline LM, Hayes DG, Womac AR, labbe N (2010) A simplified determination of lignin content in soft and hard wood via UV-spectrophotometric analysis of biomass dissolved in ionic liquids. Bioresource 5(3):1366–1389Google Scholar
  21. Kumar V, de la Luz Reus-Medina M, Yang D (2002) Preparation, characterization, and tabletting properties of a new cellulose-based pharmaceutical aid. Int J pharm 235:129–140CrossRefGoogle Scholar
  22. Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr Polym 76:94–99. doi: 10.1016/j.carbpol.2008.09.034 CrossRefGoogle Scholar
  23. Mi Y, Chen X, Guo Q (1997) Bamboo fiber-reinforced polypropylene composites: crystallization and interfacial morphology. J Appl Polym Sci 64(7):1267–1273. doi: 10.1002/(sici)1097-4628(19970516)6 CrossRefGoogle Scholar
  24. Mohamad Haafiz MK, Eichhorn SJ, Hassan A, Jawaid M (2013) Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr Polym 93:628–634. doi: 10.1016/j.carbpol.2013.01.035 CrossRefGoogle Scholar
  25. Mohamad Haafiz MK, Hassana A, Zakaria Z, Inuwa IM (2014) Isolation and characterization of cellulose nanowhiskers from oilpalm biomass microcrystalline cellulose. Carbohydr Polym 103:119–125. doi: 10.1016/j.carbpol.2013.11.055 CrossRefGoogle Scholar
  26. Nelson YU, Edgardo AG, Ana AW (2000) Microcrystalline cellulose from soybean husk: effects of solvent treatments on its properties as acetylsalicylic acid carrier. Int J Pharm 206:85–96CrossRefGoogle Scholar
  27. Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249. doi: 10.1007/s10086-009-1029-1 CrossRefGoogle Scholar
  28. Ohwoavworhua FO, Kunle OO, Ofoefule SI (2004) Extraction and characterisation of microcrystalline cellulose derived from Luffa cylindrical plant. Afr J Pharm Res Dev 1(1):1–6Google Scholar
  29. Paralikar KM, Bhatawdekar SP (1988) Microcrystalline cellulose from bagasse pulp. Biol Wastes 24:75–77. doi: 10.1016/0269-7483(88)90029-8 CrossRefGoogle Scholar
  30. Poletto M, Ornaghi-Junior HL, Zattera AJ (2014) Native cellulose: structure, characterization and thermal properties. Materials 7:6105–6119CrossRefGoogle Scholar
  31. Raju GU, Kumarappa S (2011) Experimental study on mechanical properties of groundnut shell particle-reinforced epoxy composites. J Reinf Plast Compos 30(12):1029–1037. doi: 10.1177/0731684411410761 CrossRefGoogle Scholar
  32. Sareena C, Rameshan MT, Purushothaman E (2012) Utilisation of coconut shell powder as novel filler in natural rubber. J Reinf Plast Compos 31(8):533–547. doi: 10.1177/0731684412439116 CrossRefGoogle Scholar
  33. Sarwar Jahan M, Saeed A, He Z, Ni Y (2011) Jute as raw material for the preparation of microcrystalline cellulose. Cellulose 18:451–459. doi: 10.1007/s10570-010-9481-z CrossRefGoogle Scholar
  34. Sèbe G, Ham-Pichavant F, Ibarboure E, Koffi ALC, Tingaut P (2012) Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromolecules 13:570–578CrossRefGoogle Scholar
  35. Sebio-Puñal T, Naya S, López-Beceiro J, Tarrío-Saavedra J, Artiaga R (2012) Thermogravimetric analysis of wood, holocellulose, and lignin from five wood species. J Therm Anal Calorim 109:1163–1167. doi: 10.1007/s10973-011-2133-1 CrossRefGoogle Scholar
  36. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffraction. Text Res J 29:786–794CrossRefGoogle Scholar
  37. Sun RC, Fang JM, Goodwin A, Lawther JM, Bolton J (1998) Isolation and characterization of polysaccharides from abaca fibre. J Agric Food Chem 46:2817–2822. doi: 10.1021/jf9710894 CrossRefGoogle Scholar
  38. Varghese S, Kuriakose B, Thomas S (1994) Stress relaxation in short sisal fiber-reinforced natural rubber composites. J Appl Polym Sci 53:1051–1060. doi: 10.1002/app.1994.07053080 CrossRefGoogle Scholar
  39. Wise LE, Murphy M, Adieco AAD (1946) A chlorite holocellulose, its fractionation and bearing on summative wood analysis and studies on the hemicellulsoes. Paper Trade J 122(2):35–42Google Scholar
  40. Yang H-S, Kim H-J, Son J, Park H-J, Lee B-J, Hwang T-S (2004) Rice-husk flour filled polypropylene composites; mechanical and morphological study. Compos Struct 63:305–312. doi: 10.1016/S0263-8223(03)00179-x CrossRefGoogle Scholar
  41. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. doi: 10.1016/j.fuel.2006.12.013 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CalicutMalappuramIndia

Personalised recommendations