, Volume 23, Issue 3, pp 1777–1789 | Cite as

Optimization of sulfuric acid hydrolysis conditions for preparation of nanocrystalline cellulose from enzymatically pretreated fibers

  • Facundo Beltramino
  • M. Blanca Roncero
  • Antonio L. Torres
  • Teresa Vidal
  • Cristina Valls
Original Paper


Preparation of nanocrystalline cellulose (NCC) by 62 and 65 % wt. sulfuric acid hydrolysis of cellulase-pretreated fibers was optimized to obtain the highest yield by applying two statistical plans. At optimal conditions (10 U/g odp cellulase, 25 min hydrolysis, 47 °C, 62 wt.% H2SO4), high yields (≥80 %) were obtained, including an increase of ~9 points due to the enzyme. Optimal conditions produced nanosized particles of around ~200 nm with reduced surface charge and sulfur content. The optimization allowed reduction of hydrolysis time by 44 % and increase of yield by more than 10 points compared with results in previous work. The effects of cellulase pretreatment were noticeable even under aggressive hydrolysis conditions, emphasizing its possibilities. Zeta potential and polydispersity index indicated that all studied conditions led to good-quality final products, with values around −50 mV and 0.2, respectively. Transmission electron microscopy (TEM) analysis confirmed the presence of NCC. Fourier-transform infrared (FTIR) spectroscopic analysis provided evidence that cellulase treatment increased the crystallinity of both cellulose fibers and NCC, as well as fiber accessibility, supporting the other analyses of NCC.


Nanocrystalline cellulose Cellulose nanocrystals Optimization Cellulase Enzymatic treatment Yield increase 



Cellulase-treated fibers


NCC obtained from cellulase-pretreated fibers




Fourier-transform infrared


Control fibers


NCC obtained from control fibers


Nanocrystalline cellulose


Oven-dried pulp


Lateral order index


Total crystallinity index


Enzymatic activity unit



Authors are grateful to Ministerio de Economía y Competitividad (Spain) for support of this work under the BIOSURFACEL (CTQ2012-34109, funding also from the Fondo Europeo de Desarrollo Regional, FEDER) and BIOPAPμFLUID (CTQ2013-48995-C2-1-R) projects and an FPI grant (BES-2011-046674). Special thanks are also due to the consolidated research group AGAUR 2014 SGR 534 with Universitat de Barcelona (UB). We are also grateful to Celsur and Fungal Bioproducts for supplying cotton linters and enzyme, respectively.


  1. Abitbol T, Kloser E, Gray DG (2013) Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20:785–794CrossRefGoogle Scholar
  2. Ahola S, Turon X, Osterberg M et al (2008) Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure. Langmuir 24:11592–11599. doi: 10.1021/la801550j CrossRefGoogle Scholar
  3. Alves L, Medronho B, Antunes FE et al (2014) Unusual extraction and characterization of nanocrystalline cellulose from cellulose derivatives. J Mol Liq. doi: 10.1016/j.molliq.2014.12.010 Google Scholar
  4. Anderson SR, Esposito D, Gillette W et al (2014) Enzymatic preparation of nanocrystalline and microcrystalline cellulose. Tappi J 13:35–42Google Scholar
  5. Beltramino F, Roncero MB, Vidal T et al (2015a) Increasing yield of nanocrystalline cellulose preparation process by a cellulase pretreatment. Bioresour Technol 192:574–581. doi: 10.1016/j.biortech.2015.06.007 CrossRefGoogle Scholar
  6. Beltramino F, Valls C, Vidal T, Roncero MB (2015b) Exploring the effects of treatments with carbohydrases to obtain a high-cellulose content pulp from a non-wood alkaline pulp. Carbohydr Polym 133:302–312. doi: 10.1016/j.carbpol.2015.07.016 CrossRefGoogle Scholar
  7. Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169. doi: 10.1016/j.carbpol.2013.01.033 CrossRefGoogle Scholar
  8. Chen L, Wang Q, Hirth K et al (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose. doi: 10.1007/s10570-015-0615-1 Google Scholar
  9. Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32CrossRefGoogle Scholar
  10. Fahma F, Iwamoto S, Hori N et al (2010) Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 17:977–985. doi: 10.1007/s10570-010-9436-4 CrossRefGoogle Scholar
  11. Fan JS, Li YH (2012) Maximizing the yield of nanocrystalline cellulose from cotton pulp fiber. Carbohydr Polym 88:1184–1188. doi: 10.1016/j.carbpol.2012.01.081 CrossRefGoogle Scholar
  12. Filson PB, Dawson-Andoh BE, Schwegler-Berry D (2009) Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem 11:1808. doi: 10.1039/b915746h CrossRefGoogle Scholar
  13. Fraschini C, Chauve G, Le Berre J-F et al (2014) Critical discussion of light scattering and microscopy techniques for CNC particle sizing. Nord Pulp Pap Res J 29:31–40CrossRefGoogle Scholar
  14. French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588. doi: 10.1007/s10570-012-9833-y CrossRefGoogle Scholar
  15. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. doi: 10.1021/cr900339w CrossRefGoogle Scholar
  16. Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980Google Scholar
  17. Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466. doi: 10.1002/anie.201001273 CrossRefGoogle Scholar
  18. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325. doi: 10.1016/j.eurpolymj.2014.07.025 CrossRefGoogle Scholar
  19. Lu P, Hsieh Y-L (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336. doi: 10.1016/j.carbpol.2010.04.073 CrossRefGoogle Scholar
  20. Martínez-Sanz M, Vicente AA, Gontard N et al (2015) On the extraction of cellulose nanowhiskers from food by-products and their comparative reinforcing effect on a polyhydroxybutyrate-co-valerate polymer. Cellulose 22:535–551. doi: 10.1007/s10570-014-0509-7 CrossRefGoogle Scholar
  21. Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi: 10.1039/c0cs00108b CrossRefGoogle Scholar
  22. Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8:1325–1341. doi: 10.1002/app.1964.070080323 CrossRefGoogle Scholar
  23. Neto WPF, Silvério HA, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue - Soy hulls. Ind Crops Prod 42:480–488. doi: 10.1016/j.indcrop.2012.06.041 CrossRefGoogle Scholar
  24. O’Connor RT, DuPré EF, Mitcham D (1958) Applications of infrared absorption spectroscopy to investigations of cotton and modified cottons part I: physical and crystalline modifications and oxidation. Text Res J 28:382–392. doi: 10.1177/004051755802800503 CrossRefGoogle Scholar
  25. Quintana E, Valls C, Vidal T, Roncero MB (2015a) Comparative evaluation of the action of two different endoglucanases. Part II: on a biobleached acid sulphite pulp. Cellulose 22:2081–2093. doi: 10.1007/s10570-015-0631-1 CrossRefGoogle Scholar
  26. Quintana E, Valls C, Vidal T, Roncero MB (2015b) Comparative evaluation of the action of two different endoglucanases. Part I: on a fully bleached, commercial acid sulfite dissolving pulp. Cellulose. doi: 10.1007/s10570-015-0623-1 Google Scholar
  27. Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677. doi: 10.1021/bm034519+ CrossRefGoogle Scholar
  28. Široký J, Blackburn RS, Bechtold T et al (2010) Attenuated total reflectance Fourier-transform infrared spectroscopy analysis of crystallinity changes in lyocell following continuous treatment with sodium hydroxide. Cellulose 17:103–115. doi: 10.1007/s10570-009-9378-x CrossRefGoogle Scholar
  29. Spiridon I, Teaca C-A, Bodîrlau R (2010) Structural changes evidenced by FTIR spectroscopy in cellulosic materials after pre-treatment with ionic liquid and enzymatic hydrolysis. BioResources 6:400–413Google Scholar
  30. Tanaka R, Saito T, Ishii D, Isogai A (2014) Determination of nanocellulose fibril length by shear viscosity measurement. Cellulose 21:1581–1589. doi: 10.1007/s10570-014-0196-4 CrossRefGoogle Scholar
  31. Teixeira RSS, da Silva AS, Jang J-H et al (2015) Combining biomass wet disk milling and endoglucanase/β-glucosidase hydrolysis for the production of cellulose nanocrystals. Carbohydr Polym 128:75–81. doi: 10.1016/j.carbpol.2015.03.087 CrossRefGoogle Scholar
  32. Thielemans W, Warbey CR, Walsh DA (2009) Permselective nanostructured membranes based on cellulose nanowhiskers. Green Chem 11:531–537. doi: 10.1039/b818056c CrossRefGoogle Scholar
  33. Valls C, Roncero MB (2009) Using both xylanase and laccase enzymes for pulp bleaching. Bioresour Technol 100:2032–2039. doi: 10.1016/j.biortech.2008.10.009 CrossRefGoogle Scholar
  34. Valls C, Colom JF, Baffert C et al (2010) Comparing the efficiency of the laccase–NHA and laccase–HBT systems in eucalyptus pulp bleaching. Biochem Eng J 49:401–407. doi: 10.1016/j.bej.2010.02.002 CrossRefGoogle Scholar
  35. Wang QQ, Zhu JY, Reiner RS et al (2012) Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19:2033–2047. doi: 10.1007/s10570-012-9765-6 CrossRefGoogle Scholar
  36. Yanamala N, Farcas M (2014) In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: a renewable and sustainable nanomaterial of the future. ACS Sustain Chem Eng 2:1691–1698CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Facundo Beltramino
    • 1
  • M. Blanca Roncero
    • 1
  • Antonio L. Torres
    • 1
  • Teresa Vidal
    • 1
  • Cristina Valls
    • 1
  1. 1.CELBIOTECH_Paper Engineering Research GroupUniversitat Politècnica de Catalunya (UPC. BarcelonaTech)TerrassaSpain

Personalised recommendations