Advertisement

Cellulose

, Volume 23, Issue 2, pp 1363–1374 | Cite as

Preparation and adsorption properties of aerocellulose-derived activated carbon monoliths

  • Rohan S. Dassanayake
  • Chamila Gunathilake
  • Tanya Jackson
  • Mietek Jaroniec
  • Noureddine Abidi
Original Paper

Abstract

Activated carbon was prepared from cellulose-based aerogel (aerocellulose) monoliths by carbonization and subsequent CO2 activation. The monolithic structure of the as-synthesized aerocellulose was retained during the carbonization and activation processes. The as-synthesized aerocellulose monolith was mainly mesoporous with well-developed surface area, large total pore volume, with only moderate CO2 uptake. In order to enhance CO2 adsorption, microporosity of carbonized aerocellulose was increased upon CO2 activation. The resulting activated carbon showed an enhanced specific surface area of ~750 m2 g−1, total pore volume of 0.43 cm3 g−1, and volume of micropores (pore widths <2 nm) of ~0.27 cm3 g−1. Activation of carbonized aerocellulose resulted in about five-fold increase in the specific surface area and over 27-fold increase in the volume of micropores as compared to the as-synthesized material. The resulting activated carbon showed excellent adsorption properties toward CO2 reaching 5.8 mmol g−1 of CO2 at 0 °C and 1 atm and 3.7 mmol g−1 of CO2 at 25 °C and 1.2 atm. High microporosity and surface area of the activated aerocellulose-derived carbon combined with its biocompatibility, biodegradability, non-toxicity, low cost, and good thermal stability makes this material beneficial for CO2 capture at ambient temperatures.

Keywords

Biopolymers Cellulose Aerogels Sol–gel process CO2 sorption 

Notes

Acknowlegements

The authors would like to thank Texas Department of Agriculture and Texas Tech University for partial financial support for this project. Texas Tech University manuscript number T-4-693. Authors would also like to thanks Dr. Yang Hu in the Fiber and Biopolymer Research Institute at Texas Tech University for conducting SEM imaging experiments.

Supplementary material

10570_2016_886_MOESM1_ESM.docx (285 kb)
Supplementary material 1 (DOCX 285 kb)

References

  1. Abidi N, Hequet E, Cabrales L, Gannaway J, Wilkins T, Wells LW (2008) Evaluating cell wall structure and composition of developing cotton fibers using Fourier transform infrared spectroscopy and thermogravimetric analysis. J Appl Polym Sci 107(1):476–486CrossRefGoogle Scholar
  2. Abidi N, Cabrales L, Hequet E (2010) Fourier transform infrared spectroscopic approach to the study of the secondary cell wall development in cotton fiber. Cellulose 17(2):309–320CrossRefGoogle Scholar
  3. Bhati S, Mahur JS, Choubey ON, Dixit MS (2013) Surface and adsorption properties of activated carbon fabric prepared from cellulosic polymer: mixed activation method. Bull Korean Chem Soc 34(2):569–573CrossRefGoogle Scholar
  4. Burchell TD, Judkins RR, Rogers MR, Williams AM (1997) A novel process and material for the separation of carbon dioxide and hydrogen sulfide gas mixtures. Carbon 35(9):1279–1294CrossRefGoogle Scholar
  5. Burchell MJ, Graham G, Kearsley A (2006) Cosmic dust collection in aerogel. In: Annual review of earth and planetary sciences. Annu Rev Earth Planet Sci 34:385–418Google Scholar
  6. Carta D (2009) Structural and magnetic characterization of Co and Ni silicate hydroxides in bulk and in nanostructures within silica aerogels. Chem Mater 21(5):945–953CrossRefGoogle Scholar
  7. Choma J, Marszewski M, Osuchowski L, Jagiello J, Dziura A, Jaroniec M (2015) Adsorption properties of activated carbons prepared from waste CDs and DVDs. ACS Sustain Chem Eng 3(4):733–742CrossRefGoogle Scholar
  8. Cinke M, Li J, Bauschlicher CW Jr, Ricca A, Meyyappan M (2003) CO2 adsorption in single-walled carbon nanotubes. Chem Phys Lett 376(5–6):761–766CrossRefGoogle Scholar
  9. Czakkel O, Onyestyák G, Pilatos G, Kouvelos V, Kanellopoulos N, László K (2009) Kinetic and equilibrium separation of Co and Co2 by impregnated spherical carbons. Microporous Mesoporous Mater 120(1–2):76–83CrossRefGoogle Scholar
  10. D’Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49(35):6058–6082CrossRefGoogle Scholar
  11. Davis ME (2002) Ordered porous materials for emerging applications. Nature 417(6891):813–821CrossRefGoogle Scholar
  12. Dong F, Lou H, Goto M, Hirose T (1999) A new PSA process as an extension of the Petlyuk distillation concept. Sep Purif Technol 15(1):31–40CrossRefGoogle Scholar
  13. El Kadib A, Chimenton R, Sachse A, Fajula F, Galarneau A, Coq B (2009) Functionalized inorganic monolithic microreactors for high productivity in fine chemicals catalytic synthesis. Angew Chem Int Ed 48(27):4969–4972CrossRefGoogle Scholar
  14. Ello AS, de Souza LKC, Trokourey A, Jaroniec M (2013) Coconut shell-based microporous carbons for CO2 capture. Microporous Mesoporous Mater 180:280–283CrossRefGoogle Scholar
  15. Gavillon R, Budtova T (2008) aerocellulose: new highly porous cellulose prepared from cellulose − NaOH aqueous solutions. Biomacromolecules 9(1):269–277CrossRefGoogle Scholar
  16. Ge D (2009) Hydrophobic and thermal insulation properties of silica aerogel/epoxy composite. J Non-Cryst Solids 355(52–54):2610–2615CrossRefGoogle Scholar
  17. Gebald C, Wurzbacher JA, Tingaut P, Zimmermann T, Steinfeld A (2011) Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ Sci Technol 45(20):9101–9108CrossRefGoogle Scholar
  18. Gebald C, Wurzbacher JA, Tingaut P, Steinfeld A (2013) Stability of amine-functionalized cellulose during temperature-vacuum-swing cycling for CO2 capture from air. Environ Sci Technol 47(17):10063–10070CrossRefGoogle Scholar
  19. Gebald C, Wurzbacher JA, Borgschulte A, Zimmermann T, Steinfeld A (2014) Single-component and binary CO2 and H2O adsorption of amine-functionalized cellulose. Environ Sci Technol 48(4):2497–2504Google Scholar
  20. Górka J, Zawislak A, Choma J, Jaroniec M (2008) KOH activation of mesoporous carbons obtained by soft-templating. Carbon 46(8):1159–1161CrossRefGoogle Scholar
  21. Górka J, Zawislak A, Choma J, Jaroniec M (2010) Adsorption and structural properties of soft-templated mesoporous carbons obtained by carbonization at different temperatures and KOH activation. Appl Surf Sci 256(17):5187–5190CrossRefGoogle Scholar
  22. Gunathilake C, Jaroniec M (2014) Mesoporous organosilica with amidoxime groups for CO2 sorption. ACS Appl Mater Interfaces 6(15):13069–13078CrossRefGoogle Scholar
  23. Hao GP, Li WC, Qian D, Lu AH (2010) Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv Mater 22(7):853–857CrossRefGoogle Scholar
  24. Houghton JT, Ding Y, Griggs DJ, Noguer M, Linden PJVD, Dai X, Maskell K, Johnson CA (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, pp 1–900Google Scholar
  25. Hrubesh LW (1998) Aerogel applications. J Non-Cryst Solids 225:335–342CrossRefGoogle Scholar
  26. Hu X, Radosz M, Cychosz KA, Thommes M (2011) CO2-filling capacity and selectivity of carbon nanopores: synthesis, texture, and pore-size distribution from quenched-solid density functional theory (QSDFT). Environ Sci Technol 45(16):7068–7074CrossRefGoogle Scholar
  27. Ilharco LM, Garcia AR, Lopes da Silva J, Vieira Ferreira LF (1997) Infrared approach to the study of adsorption on cellulose: influence of cellulose crystallinity on the adsorption of benzophenone. Langmuir 13(15):4126–4132CrossRefGoogle Scholar
  28. Jagiello J, Olivier J (2013a) Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation. Adsorption 19(2–4):777–783CrossRefGoogle Scholar
  29. Jagiello J, Olivier JP (2013b) 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 55:70–80CrossRefGoogle Scholar
  30. Kikkinides ES, Yang RT, Cho SH (1993) Concentration and recovery of carbon dioxide from flue gas by pressure swing adsorption. Ind Eng Chem Res 32(11):2714–2720CrossRefGoogle Scholar
  31. Kiso Y (1999) Adsorption properties of cyclic compounds on cellulose acetate. J Appl Polym Sci 71(10):1657–1663CrossRefGoogle Scholar
  32. Kistler SS (1932) Coherent expanded-aerogels. J Phys Chem 36(1):52–64CrossRefGoogle Scholar
  33. Knöfel C, Martin C, Hornebecq V, Llewellyn PL (2009) Study of carbon dioxide adsorption on mesoporous aminopropylsilane-functionalized silica and titania combining microcalorimetry and in situ infrared spectroscopy. J Phys Chem C 113(52):21726–21734CrossRefGoogle Scholar
  34. Kruk M, Jaroniec M, Sayari A (1997) Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir 13(23):6267–6273CrossRefGoogle Scholar
  35. Leung DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sust Energy Rev 39:426–443CrossRefGoogle Scholar
  36. Li JR, Ma Y, McCarthy MC, Sculley J, Yu J, Jeong HK, Balbuena PB, Zhou HC (2011) Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord Chem Rev 255(15–16):1791–1823CrossRefGoogle Scholar
  37. Lively RP, Chance RR, Kelley BT, Deckman HW, Drese JH, Jones CW, Koros WJ (2009) Hollow fiber adsorbents for CO2 removal from flue gas. Ind Eng Chem Res 48(15):7314–7324CrossRefGoogle Scholar
  38. Lu W, Sculley JP, Yuan D, Krishna R, Zhou H-C (2013) Carbon dioxide capture from air using amine-grafted porous polymer networks. J Phys Chem C 117(8):4057–4061CrossRefGoogle Scholar
  39. Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Muller TE (2012) Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energ Environ Sci 5(6):7281–7305CrossRefGoogle Scholar
  40. Miura M (1994) Temperature-dependent adsorption/desorption behavior of lower critical solution temperature (LCST) polymers on various substrates. J Biomater Sci Polym Ed 5(6):555–568CrossRefGoogle Scholar
  41. Na BK, Koo KK, Eum HM, Lee H, Song H (2001) CO2 recovery from flue gas by PSA process using activated carbon. Korean J Chem Eng 18(2):220–227CrossRefGoogle Scholar
  42. Nandi M, Okada K, Dutta A, Bhaumik A, Maruyama J, Derks D, Uyama H (2012) Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation. Chem Commun 48(83):10283–10285CrossRefGoogle Scholar
  43. Oh KW (2009) Ultra-porous flexible PET/Aerogel blanket for sound absorption and thermal insulation. Fiber polym 10(5):731–737CrossRefGoogle Scholar
  44. Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005a) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340(15):2376–2391CrossRefGoogle Scholar
  45. Oh SY, Yoo DI, Shin Y, Seo G (2005b) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340(3):417–428CrossRefGoogle Scholar
  46. Pacheco DM, Johnson JR, Koros WJ (2012) Aminosilane-functionalized cellulosic polymer for increased carbon dioxide sorption. Ind Eng Chem Res 51(1):503–514CrossRefGoogle Scholar
  47. Plaza M, Pevida C, Arias B, Casal M, Martín C, Fermoso J, Rubiera F, Pis J (2009) Different Approaches for the development of low-cost CO2 adsorbents. J Environ Eng 135(6):426–432CrossRefGoogle Scholar
  48. Plaza MG, González AS, Pevida C, Pis JJ, Rubiera F (2012) Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications. Appl Energ 99:272–279CrossRefGoogle Scholar
  49. Presser V, McDonough J, Yeon S-H, Gogotsi Y (2011) Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energ Environ Sci 4(8):3059–3066CrossRefGoogle Scholar
  50. Rein DM, Khalfin R, Cohen Y (2012) Cellulose as a novel amphiphilic coating for oil-in-water and water-in-oil dispersions. J Colloid Interface Sci 386(1):456–463CrossRefGoogle Scholar
  51. Rolison DR, Dunn B (2001) Electrically conductive oxide aerogels: new materials in electrochemistry. J Mater Chem 11(4):963–980CrossRefGoogle Scholar
  52. Rutherford SW, Do DD (2000) Adsorption dynamics of carbon dioxide on a carbon molecular sieve 5A. Carbon 38(9):1339–1350CrossRefGoogle Scholar
  53. Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36(1):23–40CrossRefGoogle Scholar
  54. Sehaqui H, Gálvez ME, Becatinni V, cheng Ng Y, Steinfeld A, Zimmermann T, Tingaut P (2015) Fast and reversible direct CO2 capture from air onto all-polymer nanofibrillated cellulose—polyethylenimine foams. Environ Sci Technol 49(5):3167–3174CrossRefGoogle Scholar
  55. Sevilla M, Fuertes AB (2011) Sustainable porous carbons with a superior performance for CO2 capture. Energ Environ Sci 4(5):1765–1771CrossRefGoogle Scholar
  56. Sevilla M, Fuertes AB (2012) CO2 adsorption by activated templated carbons. J Colloid Interface Sci 366(1):147–154CrossRefGoogle Scholar
  57. Shekhah O, Belmabkhout Y, Chen Z, Guillerm V, Cairns A, Adil K, Eddaoudi M (2014) Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture. Nat Commun 5:1–5CrossRefGoogle Scholar
  58. Takahashi T (2000) Adsorption of N-methylcarbamates on Membrane Filters. Report-Hokkaido Institute of Public Health 50:75–77Google Scholar
  59. Titirici MM, White RJ, Brun N, Budarin VL, Su DS, del Monte F, Clark JH, MacLachlan MJ (2015) Sustain Carbon Mater. Chem Soc Rev 44(1):250–290CrossRefGoogle Scholar
  60. Van Der Vaart R, Huiskes C, Bosch H, Reith T (2000) Single and mixed gas adsorption equilibria of carbon dioxide/methane on activated carbon. Adsorption 6(4):311–323CrossRefGoogle Scholar
  61. Wahby A, Ramos-Fernández JM, Martínez-Escandell M, Sepúlveda-Escribano A, Silvestre-Albero J, Rodríguez-Reinoso F (2010) High-surface-area carbon molecular sieves for selective CO2 adsorption. ChemSusChem 3(8):974–981CrossRefGoogle Scholar
  62. Wang J, Heerwig A, Lohe MR, Oschatz M, Borchardt L, Kaskel S (2012) Fungi-based porous carbons for CO2 adsorption and separation. J Mater Chem 22(28):13911–13913CrossRefGoogle Scholar
  63. Wickramaratne NP, Jaroniec M (2013) Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres. J Mater Chem A 1(1):112–116CrossRefGoogle Scholar
  64. Xing W, Liu C, Zhou Z, Zhang L, Zhou J, Zhuo S, Yan Z, Gao H, Wang G, Qiao SZ (2012) Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energ Environ Sci 5(6):7323–7327CrossRefGoogle Scholar
  65. Yang H, Yuan Y, Tsang SCE (2012) Nitrogen-enriched carbonaceous materials with hierarchical micro-mesopore structures for efficient CO2 capture. Chem Eng J 185–186:374–379CrossRefGoogle Scholar
  66. Yartseva NM (1998) Adsorption on porous polymer sorbents in ultrafiltration. Fibre Chem 30(4):260–262CrossRefGoogle Scholar
  67. Yazaydın AÖ, Snurr RQ, Park T-H, Koh K, Liu J, LeVan MD, Benin AI, Jakubczak P, Lanuza M, Galloway DB, Low JJ, Willis RR (2009) Screening of metal−organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J Am Chem Soc 131(51):18198–18199CrossRefGoogle Scholar
  68. Zhang Z, Zhou J, Xing W, Xue Q, Yan Z, Zhuo S, Qiao SZ (2013) Critical role of small micropores in high CO2 uptake. Phys Chem Chem Phys 15(7):2523–2529CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Plant and Soil Science, Fiber and Biopolymer Research InstituteTexas Tech UniversityLubbockUSA
  2. 2.Department of Chemistry and BiochemistryKent State UniversityKentUSA

Personalised recommendations