Skip to main content
Log in

High resistance to thermal decomposition in brown cotton is linked to tannins and sodium content

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Brown cotton fibers (SA-1 and MC-BL) studied were inferior to a white cotton fiber (Sure-Grow 747) in fiber quality, i.e., a shorter length, fewer twists, and lower crystallinity, but showed superior thermal resistance in thermogravimetric, differential thermogravimetric, and microscale combustion calorimetric (MCC) analyses. Brown cotton fibers yielded 11–23 % smaller total heat release and 20–40 % greater char. Washing fibers in water and a 1 % NaOH solution showed that rich natural inorganic components and the condensed tannins present in brown cotton are responsible for the unusual thermal property. The loss of inorganics from white cotton during a water wash increased the thermal decomposition temperature of cellulose, resulting in no char yield. However, the stronger binding of metal ions for brown cotton as well as its dominant adsorption of sodium ions after a 1 % NaOH wash facilitated the low-temperature thermal-reaction route; the sodium content showed a significant negative correlation with the heat release capacity of the fiber. Condensed tannins greatly enhanced the adsorption of sodium ions to the fiber and exhibited inherent thermal stability. The limiting oxygen indices (LOI) calculated from the MCC parameters indicated the slower burning characteristic of brown cotton, and its LOI was further increased upon adsorption of sodium ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285

    Article  CAS  Google Scholar 

  • Atalla RH, Vanderhart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State NMR 15:1–19

    Article  CAS  Google Scholar 

  • Celzard A, Fierro V, Amaral-Labat G, Pizzi A, Torero J (2011) Flammability assessment of tannin-based cellular materials. Polym Degrad Stab 96:477–482

    Article  CAS  Google Scholar 

  • Ceylan Ö, Goubet F, Clerck K (2014) Dynamic moisture sorption behavior of cotton fibers with natural brown pigments. Cellulose 21:1149

    CAS  Google Scholar 

  • Chen H, Cluver B (2010) Biodegradation and mildew resistance of naturally colored cottons. Text Res J 80:2188

    Article  CAS  Google Scholar 

  • Corradini E, Teixeira EM, Paladin PD, Agnelli JA, Silva ORRF, Mattoso LHC (2009) Thermal stability and degradation kinetic study of white and colored cotton fibers by thermogravimetric analysis. J Therm Anal Calorim 97:415–419

    Article  CAS  Google Scholar 

  • DeGroot WF, Shafizadeh F (1984) The influence of exchangeable cations on the carbonization of biomass. J Anal Appl Pyrolysis 6:217–232

    Article  CAS  Google Scholar 

  • Dickerson DK, Lane EF, Rodriguez DF (1999) Naturally colored cotton: resistance to changes in color and durability when refurbished with selected laundry aids. California Agriculture Technology Institute #990901

  • Fox SV (1996) Naturally flame resistant cotton. Patent 5496623 A

  • Gaugler M, Grigsby WJ (2009) Thermal degradation of condensed tannins from radiata pine bark. J Wood Chem Technol 29:305–321

    Article  CAS  Google Scholar 

  • Hinchliffe DJ, Condon B, Delhom CD, Chang S, Montalvo J, Madison C, Reynolds M, VonHoven T, Santiago Cintrón M (2015) Physical and combustion properties of nonwoven fabrics produced from conventional and naturally colored cottons. Text Res J 85:1666–1680

    Article  CAS  Google Scholar 

  • Hua S, Wang X, Yuan S, Shao M, Zhao X, Zhu S, Jiang L (2007) Characterization of pigmentation and cellulose synthesis in colored cotton fibers. Crop Sci 47:1540–1546

    Article  CAS  Google Scholar 

  • Hustvedt G, Crews PC (2005) The ultraviolet protection factor of naturally-pigmented cotton. J Cotton Sci 9:47

    CAS  Google Scholar 

  • Kelly J, Mackey M, Helleur RJ (1991) Quantitative analysis of saccharides in wood pulps by quartz-tube pulse pyrolysis-polar phase gas chromatography. J Anal Appl Pyrolysis 19:105–117

    Article  CAS  Google Scholar 

  • Kim HJ, Kato N, Kim S, Triplett B (2008) Cu/Zn superoxide dismutases in developing cotton fibers: evidence for an extracellular form. Planta 228:281–292

    Article  CAS  Google Scholar 

  • Kohel RJ (1985) Genetic analysis of fiber color variants in cotton. Crop Sci 25:793–797

    Article  Google Scholar 

  • Kono H, Yunoki S, Shikano T, Fujiwara M, Erata T, Takai M (2002) CP/MAS 13C NMR study of cellulose and cellulose derivatives. 1. Complete assignment of the CP/MAS 13C NMR spectrum of the native cellulose. J Am Chem Soc 124:7506–7511

    Article  CAS  Google Scholar 

  • Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113

    Article  CAS  Google Scholar 

  • Lege KE (1999) Sure-grow 747, a new early-maturing picker variety. In: Proceedings of the beltwide cotton conferences, vol 1, pp 69–71

  • Lewin M (2005) Unsolved problems and unanswered questions in flame retardance of polymers. Polym Degrad Stab 88:13–19

    Article  CAS  Google Scholar 

  • Li T, Fan H, Li Z, Wei J, Lin Y, Cai Y (2012) The accumulation of pigment in fiber related to proanthocyanidins synthesis for brown cotton. Acta Physiol Plant 34:813–818

    Article  Google Scholar 

  • Lyon RE, Walters RN, Stoliarov SI (2007a) Screening flame retardants for plastics using microscale combustion calorimetry. Polym Eng Sci 47:1501–1510

    Article  CAS  Google Scholar 

  • Lyon RE, Walters RN, Stoliarov SI (2007b) Thermal analysis of flammability. J Therm Anal Calorim 89:441–448

    Article  CAS  Google Scholar 

  • Ma M, Li R, Du Y, Tang Z, Zhou W (2013) Analysis of antibacterial properties of naturally colored cottons. Text Res J 83:462

    Article  Google Scholar 

  • May OL, Green CC, Roach SH, Kittrell BU (1994) Registration of PD 93001, PD 93002, PD 93003, and PD 93004 germplasm lines of upland cotton with brown lint and high fiber quality. Crop Sci 34:542

    Article  Google Scholar 

  • Mayer ZA, Apfelbacher A, Hornung A (2012) A comparative study on the pyrolysis of metal- and ash- enriched wood and the combustion properties of the gained char. J Anal Appl Pyrolysis 96:196–202

    Article  CAS  Google Scholar 

  • Nam S, Condon BD, Foston MB, Chang S (2014) Enhanced thermal and combustion resistance of cotton linked to natural inorganic salt components. Cellulose 21:791–802

    Article  CAS  Google Scholar 

  • Nishimura H, Okano T, Asano I (1981) Fine structure of wood cell walls II. Crystallite size and several peak positions of X-ray diagram of cellulose I. Mokuzai Gakkaishi 27:709–715

    CAS  Google Scholar 

  • Pan Z, Sun D, Sun J, Zhou Z, Jia Y, Pang B, Ma Z, Du X (2010) Effects of fiber wax and cellulose content on colored cotton fiber quality. Euphytica 173:141–149

    Article  CAS  Google Scholar 

  • Parmar MS, Chakraborty M (2001) Thermal and burning behavior of naturally colored cotton. Text Res J 71:1099–1102

    Article  CAS  Google Scholar 

  • Piskorz J, Radlein D, Scott DS, Czernik S (1989) Pretreatment of wood and cellulose for production of sugars by fast pyrolysis. J Anal Appl Pyrolysis 16:127–142

    Article  CAS  Google Scholar 

  • Pizzi A, Stephanou A (1993) A comparative 13C NMR study of polyflavonoid tannin extracts for phenolic polycondensates. J Appl Polym Sci 50:2105–2113

    Article  CAS  Google Scholar 

  • Richards GN, Zheng G (1991) Influence of metal ions and of salts on products from pyrolysis of wood: applications to thermochemcial processing of newsprint and biomass. J Anal Appl Pyrolysis 21:133–146

    Article  CAS  Google Scholar 

  • Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Ges Wiss Göttingen 26:98–100

    Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Slabbert N (1982) Complexation of condensed tannins with metal ions, vol 59. Plenum Press, Springer, New York

    Google Scholar 

  • Soares S, Camino G, Levchik S (1998) Effect of metal carboxylates on the thermal decomposition of cellulose. Polym Degrad Stab 62:25–31

    Article  CAS  Google Scholar 

  • Teixeira EM, Corrêa AC, Manzoli A, Leite FL, Oliveira CR, Mattoso LHC (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17:595

    Article  CAS  Google Scholar 

  • Tondi G, Zhao W, Pizzi A, Du G, Fierro V, Celzard A (2009) Tannin-based rigid foams: a survey of chemical and physical properties. Bioresour Technol 100:5162–5169

    Article  CAS  Google Scholar 

  • VanZandt MJ, Horridge P, Dever JK (1997) Flame resistance and physical characteristics of upholstery-weight naturally colored cotton. Cloth Text Res J 15:246–251

    Article  Google Scholar 

  • Wada M, Sugiyama J, Okano T (1993) Native celluloses on the basis of two crystalline phase (Iα/Iβ) system. J Appl Polym Sci 49:1491–1496

    Article  CAS  Google Scholar 

  • Wakelyn PJ, Bertoniere NR, French AD, Thibodeaux DP, Triplett BA, Rousselle M, Goynes WR Jr, Edwards JV, Hunter L, McAlister DD, Gamble GR (2006) Cotton fiber chemistry and technology. CRC Press, Boca Raton

    Book  Google Scholar 

  • Williams BL, Horridge P (1996) Effects of selected laundering and drycleaning pretreatments on the colors of naturally colored cotton. Fam Consum Sci Res J 25:137–158

    Article  Google Scholar 

  • Xiao YH, Zhang ZS, Yin MH, Luo M, Li XB, Hou L, Pei Y (2007) Cotton flavonoid structural genes related to the pigmentation in brown fibers. Biochem Biophys Res Commun 358:73–78

    Article  CAS  Google Scholar 

  • Yang CQ, He QL (2012) Textile heat release properties measured by microscale combustion calorimetry: experimental repeatability. Fire Mater 36:127–137

    Article  Google Scholar 

  • Yang CQ, He Q, Lyon RE, Hu Y (2010) Investigation of the flammability of different textile fabrics using micro-scale combustion calorimetry. Polym Degrad Stab 95:108–115

    Article  CAS  Google Scholar 

  • Ying C, Xinyuan S (2006) Effect of coloring materials on microstructure of naturally colored cotton. Colourage 53:55–58

    CAS  Google Scholar 

  • Zhan XM, Zhao X (2003) Mechanism of lead adsorption from aqueous solutions using an adsorbent synthesized from natural condensed tannin. Water Res 37:3905–3912

    Article  CAS  Google Scholar 

  • Zhan XM, Miyazaki A, Nakano Y (2001) Mechanism of lead removal from aqueous solutions using a novel tannin gel adsorbent synthesized from natural condensed tannin. J Chem Eng Jpn 34:1204–1210

    Article  CAS  Google Scholar 

  • Zhang L, Jianxin H, Wang SY (2009) Structure and thermal properties of natural colored cottons and bombax cotton. J Therm Anal Calorim 95:653–659

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Pierre Burnside at Tulane University for XRD measurements and thank Dr. Alfred D. French for his comments on the XRD result. We also thank Tracy Condon for her assistance with sample preparation. This research received no specific Grant from any funding agency in the public, commercial, or not-for-profit sectors. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US. Department of Agriculture. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Condon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, S., Kim, H.J., Condon, B.D. et al. High resistance to thermal decomposition in brown cotton is linked to tannins and sodium content. Cellulose 23, 1137–1152 (2016). https://doi.org/10.1007/s10570-016-0871-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-0871-8

Keywords

Navigation