, Volume 23, Issue 1, pp 1003–1010 | Cite as

Quantification of the chemical composition of lignocellulosics by solution 1H NMR spectroscopy of acid hydrolysates



The determination of the chemical composition of lignocellulosic material is a resource-consuming analytical challenge that usually requires several chromatography-based techniques. Minor cell wall components and degradation products are, therefore, often ignored. 1H NMR spectroscopy applied to acid hydrolysates offers a quicker and more complete means to analyze lignocellulosic materials. Excellent agreement with standard techniques was observed for d-glucose, d-mannose, d-xylose, l-arabinose, acetic acid, furfural and 5-hydroxymethyl furfural in the three examined lignocellulosic materials. Determination of d-galactose and cellobiose in the hydrolysates resulted in higher values when determined by 1H NMR spectroscopy compared to chromatography. d-Galacturonic acid, formic acid and levulinic acid could also be quantified by 1H NMR spectroscopy. Consequently higher yields (more complete mass closures) were achieved giving a more comprehensive picture of the chemical composition of the original lignocellulosic material. The 1H NMR technique appears to be advantageous especially when sugar degradation products are of interest, e.g. when studying the potential of lignocellulosics as biofuel precursors.


Biomass Chromatography Decomposition Hydrolysis Polysaccharides Wood 



We would like to thank Nicole Erasmy and Anna Knöpfle for conducting the reference analyses according to the ‘standard’ methods.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10570_2015_841_MOESM1_ESM.pdf (28 kb)
Supplementary material 1 (PDF 27 kb)
10570_2015_841_MOESM2_ESM.pdf (29 kb)
Supplementary material 2 (PDF 28 kb)
10570_2015_841_MOESM3_ESM.doc (50 kb)
Supplementary material 3 (DOC 49 kb)
10570_2015_841_MOESM4_ESM.csv (660 kb)
Supplementary material 4 (CSV 660 kb)


  1. Angyal SJ (1984) The composition of reducing sugars in solution. Adv Carbohydr Chem Biochem 42:15–68. doi: 10.1016/S0065-2318(08)60122-5 CrossRefGoogle Scholar
  2. Bose SK, Barber VA, Alves EF, Kiemle DJ, Stipanovic AJ, Francis RC (2009) An improved method for the hydrolysis of hardwood carbohydrates to monomers. Carbohydr Polym 78:396–401. doi: 10.1016/j.carbpol.2009.04.015 CrossRefGoogle Scholar
  3. Brennan M, McLean JP, Altaner CM, Ralph J, Harris PJ (2012) Cellulose microfibril angles and cell-wall polymers in different wood types of Pinus radiata. Cellulose 19:1385–1404. doi: 10.1007/s10570-012-9697-1 CrossRefGoogle Scholar
  4. Brosse N, Dufour A, Meng XZ, Sun QN, Ragauskas A (2012) Miscanthus: a fast-growing crop for biofuels and chemicals production. Biofuel Bioprod Biorefin 6:580–598. doi: 10.1002/Bbb.1353 CrossRefGoogle Scholar
  5. Chong SL, Koutaniemi S, Virkki L, Pynnonen H, Tuomainen P, Tenkanen M (2013) Quantitation of 4-O-methylglucuronic acid from plant cell walls. Carbohydr Polym 91:626–630. doi: 10.1016/j.carbpol.2012.08.078 CrossRefGoogle Scholar
  6. Clark TA, Mackie KL (1984) Fermentaion inhibitors in wood hydrolysates derived from the softwood Pinus radiata. J Chem Technol Biotechnol 34:101–110CrossRefGoogle Scholar
  7. Conner AH, Anderson L (1972) The tautomerization and mutarotation of β-l-arabinopyranose. Participation of both furanose anomers. Carbohydr Res 25:107–116. doi: 10.1016/S0008-6215(00)82751-2 CrossRefGoogle Scholar
  8. Çöpür Y, Kiemle D, Stipanovic A, Koskinen J, Makkonen H (2003) 1H-NMR spectroscopic determination of carbohydrates and yield in pine and maple pulps. Pap Ja Puu-Pap Timber 85:158–162Google Scholar
  9. Harris PJ, Stone BA (2008) Chemistry and molecular organization of plant cell walls. In: Himmel ME (ed) Biomass recalcitrance. Wiley-Blackwell, Oxford, pp 61–93CrossRefGoogle Scholar
  10. Iiyama K, Lam TBT, Kasuya N, Stone BA (1994) Rapid and simple determination of O-acetyl groups bound to plant cell walls by acid hydrolysis and 1H NMR measurement. Phytochemistry 35:959–961CrossRefGoogle Scholar
  11. Kiemle DJ, Stipanovic AJ, Mayo KE (2004) Proton NMR methods in the compositional characterization of polysaccharides. In: Gatenholm P, Tenhanen M (eds) Hemicelluloses: science and technology, ACS Symposium Series 864, American Chemical Society, Washington, DC, pp 122–139Google Scholar
  12. Kim Y, Kreke T, Mosier NS, Ladisch MR (2014) Severity factor coefficients for subcritical liquid hot water pretreatment of hardwood chips. Biotechnol Bioeng 111:254–263. doi: 10.1002/bit.25009 CrossRefGoogle Scholar
  13. Nuopponen M, Shepherd T, Birch G, Verrall S, Stewart D (2006) Hemicelluloses and pectins in 25 tropical hardwoods. Cellul Chem Technol 40:735–738Google Scholar
  14. Palmquist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33CrossRefGoogle Scholar
  15. Pilath HM, Nimlos MR, Mittal A, Himmel ME, Johnson DK (2010) Glucose reversion reaction kinetics. J Agric Food Chem 58:6131–6140. doi: 10.1021/Jf903598w CrossRefGoogle Scholar
  16. Ramos MLD, Caldeira MMM, Gil VMS (1996) NMR study of uronic acids and their complexation with molybdenum(VI) and tungsten(VI) oxoions. Carbohydr Res 286:1–15CrossRefGoogle Scholar
  17. Shin SJ, Cho NS (2008) Conversion factors for carbohydrate analysis by hydrolysis and 1H-NMR spectroscopy. Cellulose 15:255–260. doi: 10.1007/s10570-007-9156-6 CrossRefGoogle Scholar
  18. Sjöström E (1981) Wood chemistry: fundamentals and applications. Academic Press, New YorkGoogle Scholar
  19. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure TP-510-42618. NREL, GoldenGoogle Scholar
  20. Sugiyama H, Usui T (1980) The anomeric equilibrium of glucose in acidic and basic media. Agric Biol Chem 44:3001–3002CrossRefGoogle Scholar
  21. Sundberg A, Sundberg K, Lillandt C, Holmbom B (1996) Determination of hemicelluloses and pectins in wood and pulp fibres by acid methanolysis and gas chromatography. Nord Pulp Pap Res J 11:216–219. doi: 10.3183/NPPRJ-1996-11-04-p216-219 CrossRefGoogle Scholar
  22. TAPPI (2000) Carbohydrate composition of extractive-free wood and wood pulp by gas-liquid chromatography. Standard 249 cm-00 1:5Google Scholar
  23. Uremovic A, Glawischnig TD, Schuseil J, Saake B, Borchmann A, Herrmann A, Puls J (1994) Comparative chromatographic investigations for quantitative determination of wood sugars. Holz Roh- Werkst 52:347–354. doi: 10.1007/bf02615383 CrossRefGoogle Scholar
  24. Vogel J, Westphal G, Pippig C (1988) Mutarotation of d-Glucose in dependence on the reaction environment. Nahrung Food 32:709–714CrossRefGoogle Scholar
  25. Willför S, Sundberg A, Hemming J, Holmbom B (2005) Polysaccharides in some industrially important softwood species. Wood Sci Technol 39:245–258. doi: 10.1007/s00226-004-0280-2 CrossRefGoogle Scholar
  26. Willför S et al (2009) Carbohydrate analysis of plant materials with uronic acid-containing polysaccharides-A comparison between different hydrolysis and subsequent chromatographic analytical techniques. Ind Crop Prod 29:571–580. doi: 10.1016/j.indcrop.2008.11.003 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of ForestryUniversity of CanterburyChristchurchNew Zealand
  2. 2.Institut für Holzchemie und chemische Technologie des HolzesUniversität HamburgHamburgGermany

Personalised recommendations