, Volume 23, Issue 1, pp 673–687 | Cite as

Development of abamectin loaded lignocellulosic matrices for the controlled release of nematicide for crop protection

  • Jing Cao
  • Richard H. Guenther
  • Tim L. Sit
  • Steven A. Lommel
  • Charles H. Opperman
  • Julie A. Willoughby
Original Paper


Poor mobility of abamectin (Abm) in soil compromises its nematicide efficacy against nematode infestation. In the present work, four lignocellulosic materials (abaca, banana, softwood and hardwood) were fabricated into a handsheet matrix and characterized for loading and controlled release of Abm in a field-deployable matrix. The physical and chemical properties of different lignocellulosic matrices affected its function as a substrate for Abm loading as well as its ability to wrap around the plant seedlings during application. Incorporating Abm into lignocellulosic matrices by physisorption resulted in active matrices with distinct release rates for Abm. The rate of release is shown to be dependent on the matrix’s chemical compositions of cellulose, hemicellulose and lignin and the corresponding distribution of each component within the matrix. The higher lignin content (ca. 10.2 %) in the bulk of lignocellulosic matrix, e.g. mechanical-pulped banana matrix, enabled the slow and sustained release of loaded Abm; providing an efficacious crop protection around the growing tomato seedlings in the root knot nematode-infected soil. Conversely, the decreased lignin content (ca. 3.4 or 4.8 %) in other lignocellulosic matrices due to kraft-pulping and bleaching led to a relative quick release of loaded Abm thus compromising the long-term delivery of Abm to the growing plant root.


Lignocellulosic matrix Controlled release Abamectin Lignin Crop protection 



This research was funded by a grant from the Bill and Melinda Gates Foundation (PIs: J. A. Willoughby and S. A. Lommel) through the Grand Challenges Explorations initiative and USDA NIFA Agricultural System and Technology, Nanotechnology for Agricultural and Food System (PIs: S. A. Lommel, J. A. Willoughby, T. L. Sit, and C. H. Opperman). We gratefully acknowledge their support. We would also like to thank the NC State University College of Textiles and College of Agricultural and Life Sciences’ North Carolina Agricultural Research Station for providing their facilities and support in this work.

Supplementary material

10570_2015_817_MOESM1_ESM.doc (1.6 mb)
Supplementary material 1 (DOC 1664 kb)


  1. Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EG, Deleury EG, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok VC, Caillaud MC et al (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26(8):909–915CrossRefGoogle Scholar
  2. Alves CM, Reis RL, Hunt JA (2010) The dynamics, kinetics and reversibility of protein adsorption onto the surface of biodegradable materials. Soft Matter 6(17):4135–4143CrossRefGoogle Scholar
  3. ASTM International (2011) ASTM D3787—07(2011) Standard test Method for Bursting Strength of Textiles-Constant-Rate-of-Traverse (CRT) Ball Burst TestGoogle Scholar
  4. Barr CJ, Hanson LB, Click K, Perrotta G, Schall CA (2014) Influence of ionic-liquid incubation temperature on changes in cellulose structure, biomass composition, and enzymatic digestibility. Cellulose 21:973–982CrossRefGoogle Scholar
  5. Biermann CJ (1993) Handbook of pulping and papermaking. San Diego, USAGoogle Scholar
  6. Cabrera JA, Menjivar RD, Dababat A-FA, Sikora RA (2013) Properties and nematicide performance of avermectins. J Phytopathol 161(2):65–69CrossRefGoogle Scholar
  7. Cao J, Guenther RH, Sit TL, Lommel SA, Opperman CH, Willoughby JA (2015) Development of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode control. ACS Appl Mater Interfaces 7:9546–9553CrossRefGoogle Scholar
  8. Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60(1):165–182CrossRefGoogle Scholar
  9. Cheng G, Varanasi P, Li C, Liu H, Melnichenko YB, Simmons BA, Kent MS, Singh S (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules 12(4):933–941CrossRefGoogle Scholar
  10. Chukwudebe AC, Feely WF, Burnett TJ, Crouch LS, Wislocki PG (1996) Uptake of emamectin benzoate residues from soil by rotational crops. J Agric Food Chem 44(12):4015–4021CrossRefGoogle Scholar
  11. Colom X, Carrillo F, Nogués F, Garriga P (2003) Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym Degrad Stab 80(3):543–549CrossRefGoogle Scholar
  12. Cooper A, Oldinski RA, Ma H, Bryers JD (2013) Chitosan-based nanofibrous membranes for antibacterial filter applications. Carbohydr Polym 92(1):254–259CrossRefGoogle Scholar
  13. Czaja WK, Young DJ, Kawecki M, Brown RM (2006) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12CrossRefGoogle Scholar
  14. del Río JC, Gutiérrez A (2006) Chemical composition of abaca (Musa textilis) leaf fibers used for manufacturing of high quality paper pulps. J Agric Food Chem 54(13):4600–4610CrossRefGoogle Scholar
  15. Dhakal HN, Zhang ZY, Richardson MOW (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67(7–8):1674–1683CrossRefGoogle Scholar
  16. Dorris GM, Gray DG (1978) The surface analysis of paper and wood fibres by ESCA. II. Surface composition of mechanical pulps. Cellul Chem Technol 12:721–734Google Scholar
  17. Dorris GM, Gray DG (1979) The surface analysis of paper and wood fibres by ESCA (electron spectroscopy for chemical analysis). I. application to cellulose and lignin. Cellul Chem Technol 12(1):9–23Google Scholar
  18. Evans R, Newman RH, Roick UC, Suckling ID, Wallis AFA (1995) Changes in cellulose crystallinity during kraft pulping. Comparison of infrared, X-ray diffraction and solid state NMR results. Holzforschung 49(6):498–504CrossRefGoogle Scholar
  19. Fernández-Pérez M, González-Pradas E, Ureña-Amate MD, Wilkins RM, Lindup I (1998) Controlled release of imidacloprid from a lignin matrix: water release kinetics and soil mobility study. J Agric Food Chem 46(9):3828–3834CrossRefGoogle Scholar
  20. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRefGoogle Scholar
  21. Gierer J (1980) Chemical aspects of kraft pulping. Wood Sci Technol 14(4):241–266CrossRefGoogle Scholar
  22. Gruber VF, Halley BA, Hwang SC, Ku CC (1990) Mobility of avermectin B1a in soil. J Agric Food Chem 38(3):886–890CrossRefGoogle Scholar
  23. Haqiopol C, Johnston JW (2011) Chemistry of modern papermaking. CRC Press, Boca RatonGoogle Scholar
  24. Holden-Dye L, Walker RJ (2007) Anthelmintic drugs WormBook, ed. The C. elegans research community, WormBook. doi: 10.1895/wormbook.1.143.1,
  25. Hu F, Ragauskas A (2012) Pretreatment and lignocellulosic chemistry. Bioenergy Res 5(4):1043–1066CrossRefGoogle Scholar
  26. Indira KN, Grohens Y, Baley C, Thomas S, Joseph K, Pothen LA (2011) Adhesion and wettability characteristics of chemically modified banana fibre for composite manufacturing. J Adhes Sci Technol 25(13):1515–1538CrossRefGoogle Scholar
  27. Johnson RE Jr, Dettre RH, Brandreth DA (1977) Dynamic contact angles and contact angle hysteresis. J Colloid Interface Sci 62(2):205–212CrossRefGoogle Scholar
  28. Kalia S, Kaith BS, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci 49(7):1253–1272CrossRefGoogle Scholar
  29. Khan MA, Ashraf SM, Malhotra VP (2004) Development and characterization of a wood adhesive using bagasse lignin. Int J Adhes Adhes 24(6):485–493CrossRefGoogle Scholar
  30. Kleingartner JA, Srinivasan S, Mabry JM, Cohen RE, McKinley GH (2013) Utilizing dynamic tensiometry to quantify contact angle hysteresis and wetting state transitions on nonwetting surfaces. Langmuir 29(44):13396–13406CrossRefGoogle Scholar
  31. Koljonen K, Österberg M, Kleen M, Fuhrmann A, Stenius P (2004) Precipitation of lignin and extractives on kraft pulp: effect on surface chemistry, surface morphology and paper strength. Cellulose 11(2):209–224CrossRefGoogle Scholar
  32. Koubaa A, Riedl B, Koran Z (1996) Surface analysis of press dried-CTMP paper samples by electron spectroscopy for chemical analysis. J Appl Polym Sci 61(3):545–552CrossRefGoogle Scholar
  33. Krogh KA, Søeborg T, Brodin B, Halling-Sørensen B (2008) Sorption and mobility of ivermectin in different soils. J Environ Qual 37(6):2202–2211CrossRefGoogle Scholar
  34. Li K, Fu S, Zhan H, Zhan Y, Lucia L (2010) Analysis of the chemical composition and morphological structural of banana pseudo-stem. BioResources 5(2):576–585Google Scholar
  35. Ma H, Darmawan E, Zhang M, Zhang L, Bryers JD (2013) Development of a poly (ether urethane) system for the controlled release of two novel anti-biofilm agents based on gallium or zinc and its efficacy to prevent bacterial biofilm formation. J Control Release 172(3):1035–1044CrossRefGoogle Scholar
  36. Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Rev Environ Sci Biotechnol 1(2):105–114CrossRefGoogle Scholar
  37. Mascheroni S, Capretti G, Limbo S, Piergiovanni L (2012) Study of cellulose–lysozyme interactions aimed to a controlled release system for bioactives. Cellulose 19(6):1855–1866CrossRefGoogle Scholar
  38. Maximova N, Österberg M, Koljonen K, Stenius P (2001) Lignin adsorption on cellulose fibre surfaces: effect on surface chemistry, surface morphology and paper strength. Cellulose 8(2):113–125CrossRefGoogle Scholar
  39. Mulder WJ, Gosselink RJA, Vingerhoeds MH, Harmsen PFH, Eastham D (2011) Lignin based controlled release coatings. Ind Crops Prod 34(1):915–920CrossRefGoogle Scholar
  40. Ornaghi H Jr, Poletto M, Zattera A, Amico S (2013) Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers. Cellulose 21(1):1–12Google Scholar
  41. Otsuka H, Nagasaki Y, Kataoka K (2000) Dynamic wettability study on the functionalized PEGylated layer on a polylactide surface constructed by the coating of aldehyde-ended poly(ethylene glycol) (PEG)/polylactide (PLA) block copolymer. Sci Technol Adv Mater 1(1):21–29CrossRefGoogle Scholar
  42. Penn LS, Miller B (1980) A study of the primary cause of contact angle hysteresis on some polymeric solids. J Colloid Interface Sci 78(1):238–241CrossRefGoogle Scholar
  43. Punyamurthy R, Sampathkumar D, Srinivasa CV, Bennehalli B (2012) Effect of alkali treatment on water absorption of single cellulosic abaca fiber. BioResources 7(3):3515–3524Google Scholar
  44. Putter I, Mac Connell JG, Preiser FA, Haidri AA, Ristich SS, Dybas RA (1981) Avermectin: novel insecticides, acaricides and nematicides from a soil microorganism. Experientia 37(9):963–964CrossRefGoogle Scholar
  45. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794CrossRefGoogle Scholar
  46. Singh L, Bandyopadhyay TK (2013) Handmade paper from banana stem. Int J Sci Eng Res 4(7):2074–2079Google Scholar
  47. Tang CY, Kwon Y-N, Leckie JO (2007) Probing the nano- and micro-scales of reverse osmosis membranes—a comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements. J Membr Sci 287(1):146–156CrossRefGoogle Scholar
  48. TAPPI (2008) Forming handsheets for physical tests of pulp. Test Method. Retrieved 15 April 2008Google Scholar
  49. Terinte N, Ibbett R, Schuster KC (2011) Overview on native cellulose and microcrystalline cellulose I structure studied x-ray diffraction (WAXD): comparison between measurement techniques. Lenzing Ber 89:118–131Google Scholar
  50. The American Phytopathological Society (2005) Fungicide and nematicide tests. Seed treatment vs. in-furrow applied nematicides and insecticides for reniform nematode and thrips control. Report 61:N009Google Scholar
  51. The Paperwright (2014) Moulds and deckles. Accessed 02 Feb 2014
  52. Thomas S, Paul SA, Pothan LA, Deepa B (2011) Natural fibres: structure, properties and applications. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer composites. Springer, Berlin, pp 3–42CrossRefGoogle Scholar
  53. Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Stahl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576CrossRefGoogle Scholar
  54. Xiao LP, Sun ZJ, Shi ZJ, Xu F, Sun RC (2011) Impact of hot compressed water pretreatment on the structural changes of woody biomass for bioethanol production. BioResources 6(2):1576–1598Google Scholar
  55. Xiao Z, Li Y, Wu X, Qi G, Li N, Zhang K, Wang D, Sun XS (2013) Utilization of sorghum lignin to improve adhesion strength of soy protein adhesives on wood veneer. Ind Crops Prod 50:501–509CrossRefGoogle Scholar
  56. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788CrossRefGoogle Scholar
  57. Yu P (2011) Microprobing the molecular spatial distribution and structural architecture of feed-type sorghum seed tissue (Sorghum bicolor L.) using the synchrotron radiation infrared microspectroscopy technique. J Synchrotron Radiat 18(5):790–801CrossRefGoogle Scholar
  58. Yuan Y, Lee TR (2013) Contact angle and wetting properties. In: Bracco G, Holst B (eds) Surface science techniques. Springer, Berlin, pp 3–34CrossRefGoogle Scholar
  59. Zhang YHP (2008) Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J Ind Microbiol Biotechnol 35(5):367–375CrossRefGoogle Scholar
  60. Zhong L, Fu S, Li F, Zhen H (2010) Chlorine dioxide treatment of sisal fiber: surface lignin and its influences on fiber surface characteristics and interafacial behavior of sisal fiber/phenolic resin composites. BioResources 5(4):2431–2446Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jing Cao
    • 1
  • Richard H. Guenther
    • 2
  • Tim L. Sit
    • 2
  • Steven A. Lommel
    • 2
  • Charles H. Opperman
    • 2
  • Julie A. Willoughby
    • 1
  1. 1.Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighUSA
  2. 2.Department of Plant PathologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations