, Volume 23, Issue 1, pp 199–212 | Cite as

Residual lignin inhibits thermal degradation of cellulosic fiber sheets

  • Emilia Vänskä
  • Tuomas Vihelä
  • Maria Soledad Peresin
  • Jari Vartiainen
  • Michael Hummel
  • Tapani Vuorinen
Original Paper


The market for cellulosic fiber based food packaging applications is growing together with the importance of improving the thermal durability of these fibers. To shed light on this, we investigated the role of residual lignin in pulp on the thermal stability of refined pulp sheets. The unbleached, oxygen delignified, and fully bleached pulp sheets were studied after four separate refining degrees. Comparison by Gurley air resistance, Bendtsen porosity, and the oxygen transmission rate tests showed that lignin containing sheets had better air and oxygen barrier properties than fully bleached sheets. Sheet density and light scattering coefficient measurements further confirmed that the lignin containing pulps underwent more intense fibrillation upon refining that changed the barrier properties of the sheets. Thermal treatments (at 225 °C, 20 and 60 min, in water vapor atmospheres of 1 and 75 v/v %) were applied to determine the thermal durability of the sheets. The results revealed that the residual lignin in pulps improved the thermal stability of the pulp sheets in the hot humid conditions. This effect was systematically studied by tensile strength, brightness, and light absorption coefficient measurements. The intrinsic viscosity results support the findings and suggest that lignin is able to hinder the thermal degradation of pulp polysaccharides. In spite of the fact that lignin is known to enhance the thermal yellowing of paper, no significant discoloration of the pulp sheets containing residual lignin was observed in the hot humid conditions (75 v/v %). Our results support the idea of lignin strengthening the thermal durability of paper.


Antioxidant properties Refining Residual lignin Strength loss Thermal degradation Thermal yellowing 



The authors would like to thank Mr. Esko Pekuri (Metsä Fibre Oy, Finland) for his expertise and support in assisting in the pulp refining. A particular thanks to Mrs. Ritva Kivelä (Aalto University) for obtaining the AFM images. The financial support of Metsä Fibre Oy, FIBIC Ltd. (EffFibre Program) and TEKES (the Finnish Funding Agency for Technology and Innovation), are gratefully acknowledged.


  1. Andersson C (2008) New ways to enhance the functionality of paperboard by surface treatment—a review. Pack Technol Sci 21:339–373. doi: 10.1002/pts.823 CrossRefGoogle Scholar
  2. Arshanitsa A, Ponomarenko J, Dizhbite T, Andersone A, Gosselink RJA, Van Der Putten J, Lauberts M, Telysheva G (2013) Fractionation of technical lignins as a tool for improvement of their antioxidant properties. J Anal Appl Pyrolysis 103:78–85. doi: 10.1016/j.jaap.2012.12.023 CrossRefGoogle Scholar
  3. Baptista C, Robert D, Duarte AP (2008) Relationship between lignin structure and delignification degree in Pinus pinaster kraft pulps. Bioresour Technol 99:2349–2356. doi: 10.1016/j.biortech.2007.05.012 CrossRefGoogle Scholar
  4. Beyer M, Lind A, Koch H, Fischer K (1999) Heat-induced yellowing of TCF-bleached sulphite pulps—mechanistic aspects and factors that influence that process. J Pulp Pap Sci 25:47–51Google Scholar
  5. Beyer M, Koch H, Fischer K (2006) Role of hemicelluloses in the formation of chromophores during heat treatment of bleached chemical pulps. Macromol Sympos 232:98–106. doi: 10.1002/masy.200551412 CrossRefGoogle Scholar
  6. Boeva R, Radeva G, Hinkov P, Hinkov E (2012) Thermal ageing of different kinds of fiber materials: a kinetic study. J Univ Chem Technol Met 47:37–42Google Scholar
  7. Borrega M, Tolonen LK, Bardot F, Testova L, Sixta H (2013) Potential of hot water extraction of birch wood to produce high-purity dissolving pulp after alkaline pulping. Bioresour Technol 135:665–671. doi: 10.1016/j.biortech.2012.11.107 CrossRefGoogle Scholar
  8. Brebu M, Vasile C (2010) Thermal degradation of lignin—a review. Cell Chem Technol 44:353–363Google Scholar
  9. Castle L, Jickells SM, Gilbert J, Harrison N (1990) Migration testing of plastics and microwave-active materials for high-temperature food-use applications. Food Addit Contam 7:779–797. doi: 10.1080/02652039009373940 CrossRefGoogle Scholar
  10. Chirat C, De La Chapelle V (1999) Heat- and light-induced brightness reversion of bleached chemical pulps. J Pulp Pap Sci 25:201–205Google Scholar
  11. Cui C, Sadeghifar H, Sen S, Argyropoulos DS (2013) Toward thermoplastic lignin polymers; part II: thermal and polymer characteristics of kraft lignin and derivatives. BioResources 8:864–886Google Scholar
  12. Dizhbite T, Telysheva G, Jurkjane V, Viesturs U (2004) Characterization of the radical scavenging activity of lignins—natural antioxidants. Bioresour Technol 95:309–317. doi: 10.1016/j.biortech.2004.02.024 CrossRefGoogle Scholar
  13. Fardim P, Durán N (2003) Modification of fibre surfaces during pulping and refining as analysed by SEM, XPS and ToF-SIMS. Colloids Surf A Physicochem Eng Asp 223:263–276. doi: 10.1016/S0927-7757(03)00149-3 CrossRefGoogle Scholar
  14. Fenner RA, Lephardt JO (1981) Examination of the thermal decomposition of Kraft pine lignin by Fourier transform infrared evolved gas analysis. J Agric Food Chem 29:846–849CrossRefGoogle Scholar
  15. Ferrer A, Quintana E, Filpponen I, Solala I, Vidal T, Rodríguez A, Laine J, Rojas OJ (2012) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19:2179–2193. doi: 10.1007/s10570-012-9788-z CrossRefGoogle Scholar
  16. Gierer J (1980) Chemical aspects of kraft pulping. Wood Sci Technol 14:241–266. doi: 10.1007/BF00383453 CrossRefGoogle Scholar
  17. Giertz HW (1957) The effects of beating on individual fibres, fundamentals of papermaking fibres. Transactions of the 1st fundamental research symposium, Cambridge, pp 389–409Google Scholar
  18. Giertz HW (1964) Contribution to the theory of tensile strength. In: Proceedings of European TAPPI conference on beating, Venice, Italy, pp 39–47Google Scholar
  19. Granström A, Eriksson T, Gellerstedt G, Rööst C, Larsson P (2001) Variables affecting the thermal yellowing of TCF-bleached birch kraft pulps. Nor Pulp Pap Res J 16:18–23CrossRefGoogle Scholar
  20. Gurnagul N, Page DH, Paice MG (1992) The effect of cellulose degradation on the strength of wood pulp fibers. Nord Pulp Pap Res J 7:152–154CrossRefGoogle Scholar
  21. Hill DJT, Le TT, Darveniza M, Saha T (1995) A study of degradation of cellulosic insulation materials in a power transformer. Part 2: tensile strength of cellulose insulation paper. Polym Degrad Stab 49:429–435. doi: 10.1016/0141-3910(95)00100-Z CrossRefGoogle Scholar
  22. Howard RC, Bichard W (1992) Basic effects of recycling on pulp properties. J Pulp Pap Sci 18:J151–J159Google Scholar
  23. Jakab E (1997) Thermal decomposition of wood and cellulose in the presence of solvent vapors. Ind Eng Chem Res 36:2087–2095CrossRefGoogle Scholar
  24. Johansson C, Bras J, Mondragon I, Nechita P, Plackett D, Šimon P, Svetec DG, Virtanen S, Baschetti MG, Breen C, Clegg F, Aucejo S (2012) Renewable fibers and bio-based materials for packaging applications—a review of recent developments. BioResources 7:2506–2552CrossRefGoogle Scholar
  25. Kačík F, Kačíková D, Jablonský M, Katuščák S (2009) Cellulose degradation in newsprint paper ageing. Polym Degrad Stab 94:1509–1514. doi: 10.1016/j.polymdegradstab.2009.04.033 CrossRefGoogle Scholar
  26. Kasaai MR (2002) Comparison of various solvents for determination of intrinsic viscosity and viscometric constants for cellulose. J Appl Polym Sci 86:2189–2193. doi: 10.1002/app.11164 CrossRefGoogle Scholar
  27. Kim H-S, Kim S, Kim H-J, Yang H-S (2006) Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochim Acta 451:181–188. doi: 10.1016/j.tca.2006.09.013 CrossRefGoogle Scholar
  28. Kjellgren H, Gällstedt M, Engström G, Järnström L (2006) Barrier and surface properties of chitosan-coated greaseproof paper. Carbohydr Polym 65:453–460. doi: 10.1016/j.carbpol.2006.02.005 CrossRefGoogle Scholar
  29. Koch G (2008) Raw Material for Pulp. In: Sixta H (ed) Hand book of pulp, Volume 1. WILEY-VCH, Weinheim, pp 21-68. DOI:  10.1002/9783527619887.ch2
  30. Laine J, Stenius P, Carlsson G, Ström G (1996) The effect of ECF and TCF bleaching on the surface chemical composition of kraft pulp as determined by ESCA. Nord Pulp Pap Res J 11:201–210CrossRefGoogle Scholar
  31. Logenius L, Friman L, Agnemo R (2008) The influence of temperature and moisture on the optical properties of cellulose in the presence of metal chlorides and glucuronic acid. Nord Pulp Pap Res J 23:72–80CrossRefGoogle Scholar
  32. Łojewska J, Miśkowiec P, Łojewski T, Proniewicz LM (2005) Cellulose oxidative and hydrolytic degradation: in situ FTIR approach. Polym Degrad Stab 88:512–520CrossRefGoogle Scholar
  33. Łojewski T, Ziȩba K, Knapik A, Bagniuk J, Lubańska A, Łojewska J (2010) Evaluating paper degradation progress. Cross-linking between chromatographic, spectroscopic and chemical results. Appl Phys A 100:809–821. doi: 10.1007/s00339-010-5657-5 CrossRefGoogle Scholar
  34. Mancera C, El Mansouri N-E, Vilaseca F, Ferrando F, Salvado J (2011) The effect of lignin as a natural adhesive on the physico-mechanical properties of vitis vinifera fiberboards. BioResources 6:2851–2860Google Scholar
  35. Matsuoka S, Kawamoto H, Saka S (2011) Reducing end-group of cellulose as a reactive site for thermal discoloration. Polym Degrad Stab 96:1242–1247. doi: 10.1016/j.polymdegradstab.2011.04.009 CrossRefGoogle Scholar
  36. Nuopponen M, Vuorinen T, Jämsä S, Viitaniemi P (2004) Thermal modifications in softwood studied by FT-IR and UV resonance Raman spectroscopies. J Wood Chem Technol 24:13–26. doi: 10.1081/WCT-120035941 CrossRefGoogle Scholar
  37. Peelman N, Ragaert P, De Meulenaer B, Adons D, Peeters R, Cardon L, Van Impe F, Devlieghere F (2013) Application of bioplastics for food packaging. Trends Food Sci Tech 32:128–141. doi: 10.1016/j.tifs.2013.06.003 CrossRefGoogle Scholar
  38. Rojo E, Peresin MS, Sampson WW, Hoeger IC, Vartiainen J, Laine J, Rojas OJ (2015) Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem 53:345–355. doi: 10.1039/c4gc02398f Google Scholar
  39. Schmidt JA, Rye CS, Gurnagul N (1995) Lignin inhibits autoxidative degradation of cellulose. Polym Degrad Stab 49:291–297CrossRefGoogle Scholar
  40. Seth RS, Page DH (1996) The problem of using Page’s equation to determine loss in shear strength of fiber-fiber bonds upon pulp drying. Tappi J 79:206–210Google Scholar
  41. Shao Z, Li K (2006) The effect of fiber surface lignin on interfiber bonding. J Wood Chem Technol 26:231–244. doi: 10.1080/02773810601023438 CrossRefGoogle Scholar
  42. Sivonen H, Nuopponen M, Maunu SL, Sundholm F, Vuorinen T (2003) Carbon-thirteen cross-polarization magic angle spinning nuclear magnetic resonance and Fourier transform infrared studies of thermally modified wood exposed to brown and soft rot fungi. Appl Spectrosc 57:266–273. doi: 10.1366/000370203321558164 CrossRefGoogle Scholar
  43. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2011) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory, GoldenGoogle Scholar
  44. Song YS, Begley T, Paquette K, Komolprasert V (2003) Effectiveness of polypropylene film as a barrier to migration from recycled paperboard packaging to fatty and high-moisture food. Food Addit Contam 20:875–883. doi: 10.1080/02652030310001597592 CrossRefGoogle Scholar
  45. Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101:5961–5968. doi: 10.1016/j.biortech.2010.02.104 CrossRefGoogle Scholar
  46. Vainio AK, Paulapuro H (2007) Interfiber bonding and fiber segment activation in paper. BioResources 2:442–458Google Scholar
  47. Vänskä E, Vuorinen T (2015) Effect of cellulase-assisted refining on the thermal degradation of bleached high-density paper. Holzforschung 69:703–712. doi: 10.1515/hf-2014-0194 CrossRefGoogle Scholar
  48. Vänskä E, Luukka M, Solala I, Vuorinen T (2014) Effect of water vapor in air on thermal degradation of paper at high temperature. Polym Degrad Stab 99:283–289. doi: 10.1016/j.polymdegradstab.2013.10.020 CrossRefGoogle Scholar
  49. Vishtal A, Retulainen E (2012) Deep-drawing of paper and paperboard: the role of material properties. BioResources 7:4424–4450Google Scholar
  50. Wahlström T, Lundh A, Hansson T, Fellers C (2000) Biaxial straining of handsheets during drying - effect on delamination resistance. Nord Pulp Pap Res J 15:237–242CrossRefGoogle Scholar
  51. Zanoni B, Peri C, Bruno D (1995) Modelling of browning kinetics of bread crust during baking. Lebensm Wiss Technol 28:604–609. doi: 10.1016/0023-6438(95)90008-X CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Emilia Vänskä
    • 1
  • Tuomas Vihelä
    • 1
  • Maria Soledad Peresin
    • 2
  • Jari Vartiainen
    • 2
  • Michael Hummel
    • 1
  • Tapani Vuorinen
    • 1
  1. 1.Department of Forest Products Technology, School of Chemical TechnologyAalto UniversityAaltoFinland
  2. 2.VTT Technical Research Centre of FinlandEspooFinland

Personalised recommendations