, Volume 23, Issue 1, pp 145–161 | Cite as

Prediction of the structures of the plant-specific regions of vascular plant cellulose synthases and correlated functional analysis

  • Latsavongsakda Sethaphong
  • Jonathan K. Davis
  • Erin Slabaugh
  • Abhishek Singh
  • Candace H. Haigler
  • Yaroslava G. Yingling
Original Paper


Seed plants express cellulose synthase (CESA) protein isoforms with non-redundant functions, but how the isoforms function differently is unknown. Compared to bacterial cellulose synthases, CESAs have two insertions in the large cytosolic loop: the relatively well-conserved Plant Conserved Region (P-CR) and a Class Specific Region (CSR) that varies between CESAs. Absent any atomic structure of a plant CESA, we used ab initio protein structure prediction and molecular modeling to explore how these plant-specific regions may modulate CESA function. We modeled P-CR and CSR peptides from Arabidopsis thaliana CESAs representing the six clades of seed plant CESAs. As expected, the predicted wild type P-CR structures were similar. Modeling of the mutant P-CR of Atcesa8 R362K (fra6) suggested that changes in local structural stability and surface electrostatics may cause the mutant phenotype. Among CSRs within CESAs required for primary wall cellulose synthesis, the amino sequence and the modeled arrangement of helices was most similar in AtCESA1 and AtCESA3. Genetic complementation of known Arabidopsis mutants showed that the CSRs of AtCESA1 and AtCESA3 can function interchangeably in vivo. Analysis of protein surface electrostatics led to ideas about how the surface charges on CSRs may mediate protein–protein interactions. Refined modeling of the P-CR and CSR regions of GhCESA1 from cotton modified their tertiary structures, spatial relationships to the catalytic domain, and preliminary predictions about CESA oligomer formation. Cumulatively, the results provide structural clues about the function of plant-specific regions of CESA.


Arabidopsis thaliana Cellulose synthesis Computational protein structure prediction Isoform specificity Mutant complementation 



The authors thank Carmen Wilson for her assistance in the generation, propagation, and phenotyping of stable Arabidopsis transformants used in this study.


This work was supported as part of The Center for LignoCellulose Structure and Formation, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences (Award Number DE-SC0001090).

Supplementary material

10570_2015_789_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1320 kb)


  1. Arioli T et al (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–720. doi: 10.1126/science.279.5351.717 CrossRefGoogle Scholar
  2. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041. doi: 10.1073/pnas.181342398 CrossRefGoogle Scholar
  3. Berenger F, Shrestha R, Zhou Y, Simoncini D, Zhang KYJ (2012) Durandal: fast exact clustering of protein decoys. J Comput Chem 33:471–474. doi: 10.1002/jcc.21988 CrossRefGoogle Scholar
  4. Bringmann M, Li E, Sampathkumar A, Kocabek T, Hauser MT, Persson S (2012) POM-POM2/cellulose synthase interacting1 is essential for the functional association of cellulose synthase and microtubules in Arabidopsis. Plant Cell 24:163–177. doi: 10.1105/tpc.111.093575 CrossRefGoogle Scholar
  5. Carroll A, Specht CD (2011) Understanding plant cellulose synthases through a comprehensive investigation of the cellulose synthase family sequences. Front Plant Sci 2:5. doi: 10.3389/fpls.2011.00005 CrossRefGoogle Scholar
  6. Carroll A, Mansoori N, Li SD, Lei L, Vernhettes S, Visser RGF, Somerville C, Gu Y, Trindade LM (2012) Complexes with mixed primary and secondary cellulose synthases are functional in Arabidopsis plants. Plant Physiol 160:726–737. doi: 10.1104/pp.112.199208 CrossRefGoogle Scholar
  7. Case DA et al (2010) AMBER 11. University of California, San FanciscoGoogle Scholar
  8. Chen SL, Ehrhardt DW, Somerville CR (2010) Mutations of cellulose synthase (CESA1) phosphorylation sites modulate anisotropic cell expansion and bidirectional mobility of cellulose synthase. Proc Natl Acad Sci USA 107:17188–17193. doi: 10.1073/pnas.1012348107 CrossRefGoogle Scholar
  9. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x CrossRefGoogle Scholar
  10. Craft JW, Legge GB (2005) An AMBER/DYANA/MOLMOL phosphorylated amino acid library set and incorporation into NMR structure calculations. J Biomol NMR 33:15–24. doi: 10.1007/s10858-005-1199-0 CrossRefGoogle Scholar
  11. Das R, Baker D (2008) Macromolecular modeling with Rosetta. Annu Rev Biochem 77:363–382. doi: 10.1146/annurev.biochem.77.062906.171838 CrossRefGoogle Scholar
  12. Desprez T, Juraniec M, Crowell EF, Jouy H, Pochylova Z, Parcy F, Hofte H, Gonneau M, Vernhettes S (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:15572–15577. doi: 10.1073/pnas.0706569104 CrossRefGoogle Scholar
  13. Dolinsky T, Nielsen J, McCammon J, Baker N (2004) PDB2PQR: an automated pipeline for the setup, execution, and analysis of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32:W665–W667. doi: 10.1093/nar/gkh381 CrossRefGoogle Scholar
  14. Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, Baker NA (2007) PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 35:W522–W525. doi: 10.1093/nar/gkm276 CrossRefGoogle Scholar
  15. Giddings TH, Brower DL, Staehelin LA (1980) Visualization of particle complexes in the plasma-membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell-walls. J Cell Biol 84:327–339. doi: 10.1083/jcb.84.2.327 CrossRefGoogle Scholar
  16. Gu Y, Kaplinsky N, Bringmann M, Cobb A, Carroll A, Sampathkumar A, Baskin TI, Persson S, Somerville CR (2010) Identification of a cellulose synthase-associated protein required for cellulose biosynthesis. Proc Natl Acad Sci USA 107:12866–12871. doi: 10.1073/pnas.1007092107 CrossRefGoogle Scholar
  17. Han J, Kamber M (2006) Data mining: concepts and techniques, 2nd edn. Morgan Kaufmann, San FranciscoGoogle Scholar
  18. Harder T, Borg M, Boomsma W, Røgen P, Hamelryck T (2012) Fast large-scale clustering of protein structures using Gauss integrals. Bioinformatics 28:510–515. doi: 10.1093/bioinformatics/btr692 CrossRefGoogle Scholar
  19. Harris D, DeBolt S (2008) Relative crystallinity of plant biomass: studies on assembly, adaptation and acclimation. PLoS ONE. doi: 10.1371/journal.pone.0002897 Google Scholar
  20. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59. doi: 10.1016/0378-1119(89)90358-2 CrossRefGoogle Scholar
  21. Jarvis MC (2013) Cellulose biosynthesis: counting the chains. Plant Physiol 163:1485–1486. doi: 10.1104/pp.113.231092 CrossRefGoogle Scholar
  22. Kim HS, Ha SH, Sethaphong L, Koo YM, Yingling YG (2014) The relationship between enhanced enzyme activity and structural dynamics in ionic liquids: a combined computational and experimental study. Phys Chem Chem Phys 16:2944–2953. doi: 10.1039/c3cp52516c CrossRefGoogle Scholar
  23. Kimura S, Laosinchai W, Itoh T, Cui X, Linder RC, Brown RM (1999) Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular vlant Vigna angularis. Plant Cell 11:2075–2085. doi: 10.1105/tpc.11.11.2075 CrossRefGoogle Scholar
  24. Kumar M, Turner S (2015) Plant cellulose synthesis: CESA proteins crossing kingdoms. Phytochemistry 112:91–99. doi: 10.1016/j.phytochem.2014.07.009 CrossRefGoogle Scholar
  25. Lei L et al (2014) The jiaoyao1 mutant is an allele of korrigan that affects the organization of both cellulose microfibrils and microtubules in Arabidopsis. Plant Cell 26:2601–2616. doi: 10.1105/tpc.114.126193 CrossRefGoogle Scholar
  26. Li SD, Lei L, Somerville CR, Gu Y (2012) Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proc Natl Acad Sci USA 109:185–190. doi: 10.1073/pnas.1118560109 CrossRefGoogle Scholar
  27. Lindorff-Larsen K, Maragakis P, Piana S, Eastwood M, Dror R, Shaw D (2012) Systematic validation of protein force fields against experimental data. PLoS ONE 7:e32131. doi: 10.1371/journal.pone.0032131 CrossRefGoogle Scholar
  28. Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28:128–137. doi: 10.1109/TIT.1982.1056489 CrossRefGoogle Scholar
  29. McFarlane HE, Döring A, Persson S (2014) The cell biology of cellulose synthesis. Annu Rev Plant Biol 65:69–94. doi: 10.1146/annurev-arplant-050213-040240 CrossRefGoogle Scholar
  30. Molloy K, Saleh S, Shehu A (2013) Probabilistic search and energy guidance for biased decoy sampling in ab initio protein structure prediction. IEEE/ACM Trans Comput Biol Bioinf 10:1162–1167. doi: 10.1109/TCBB.2013.29 CrossRefGoogle Scholar
  31. Morgan J, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493:181–186. doi: 10.1038/nature11744 CrossRefGoogle Scholar
  32. Morgan JL, McNamara JT, Zimmer J (2014) Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat Struct Mol Biol 21:489–496. doi: 10.1038/nsmb.2803 CrossRefGoogle Scholar
  33. Mueller SC, Brown RM (1980) Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants. J Cell Biol 84:315–326. doi: 10.1083/jcb.84.2.315 CrossRefGoogle Scholar
  34. Omadjela O, Narahari A, Strumillo J, Mélida H, Mazur O, Bulone V, Zimmer J (2013) BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis. Proc Natl Acad Sci USA 110:17856–17861. doi: 10.1073/pnas.1314063110 CrossRefGoogle Scholar
  35. Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM (1996) Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci USA 93:12637–12642. doi: 10.1073/pnas.93.22.12637 CrossRefGoogle Scholar
  36. Pei J, Grishin NV (2001) AL2CO: calculation of positional conservation in a protein sequence alignment. Bioinformatics 17:700–712. doi: 10.1093/bioinformatics/17.8.700 CrossRefGoogle Scholar
  37. Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P, Khitrov N, Auer M, Somerville CR (2007) Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc Natl Acad Sci USA 104:15566–15571. doi: 10.1073/pnas.0706592104 CrossRefGoogle Scholar
  38. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. doi: 10.1002/jcc.20084 CrossRefGoogle Scholar
  39. Pierce B, Wiehe K, Hwang H, Kim B, Vreven T, Weng Z (2014) ZDOCK server: interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics 30:1771–1773. doi: 10.1093/bioinformatics/btu097 CrossRefGoogle Scholar
  40. Pysh L, Alexander N, Swatzyna L, Harbert R (2012) Four alleles of AtCESA3 form an allelic series with respect to root phenotype in Arabidopsis thaliana. Physiol Plant 144:369–381. doi: 10.1111/j.1399-3054.2012.01575.x CrossRefGoogle Scholar
  41. Ramakrishnan C, Dani VS, Ramasarma T (2002) A conformational analysis of Walker motif A [GXXXXGKT (S)] in nucleotide-binding and other proteins. Protein Eng 15:783–798. doi: 10.1093/protein/15.10.783 CrossRefGoogle Scholar
  42. Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Nat Rev Mol Cell Biol 10:218–227. doi: 10.1038/nrm2646 CrossRefGoogle Scholar
  43. Roberts EM, Roberts AW (2009) A cellulose synthase (Cesa) gene from the red alga Porphyra yezoensis (rhodophyta). J Phycol 45:203–212. doi: 10.1111/j.1529-8817.2008.00626.x CrossRefGoogle Scholar
  44. Scheible WR, Eshed R, Richmond T, Delmer D, Somerville C (2001) Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants. Proc Natl Acad Sci USA 98:10079–10084. doi: 10.1073/pnas.191361598 CrossRefGoogle Scholar
  45. Sethaphong L, Haigler CH, Kubicki JD, Zimmer J, Bonetta D, DeBolt S, Yingling YG (2013) Tertiary model of a plant cellulose synthase. Proc Natl Acad Sci USA 110:7512–7517. doi: 10.1073/pnas.1301027110 CrossRefGoogle Scholar
  46. Sheinerman FB, Norel R, Honig B (2000) Electrostatic aspects of protein–protein interactions. Curr Opin Struct Biol 10:153–159. doi: 10.1016/S0959-440X(00)00065-8 CrossRefGoogle Scholar
  47. Shortle D, Simons KT, Baker D (1998) Clustering of low-energy conformations near the native structures of small proteins. Proc Natl Acad Sci USA 95:11158–11162. doi: 10.1073/pnas.95.19.11158 CrossRefGoogle Scholar
  48. Slabaugh E, Davis JK, Haigler CH, Yingling YG, Zimmer J (2014a) Cellulose synthases: new insights from crystallography and modeling. Trends Plant Sci 19:99–106. doi: 10.1016/j.tplants.2013.09.009 CrossRefGoogle Scholar
  49. Slabaugh E, Sethaphong L, Xiao C, Amick J, Anderson CT, Haigler CH, Yingling YG (2014b) Computational and genetic evidence that different structural conformations of a non-catalytic region affect the function of plant cellulose synthase. J Exp Bot 65:6645–6653. doi: 10.1093/jxb/eru383 CrossRefGoogle Scholar
  50. Somerville CR (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78. doi: 10.1146/annurev.cellbio.22.022206.160206 CrossRefGoogle Scholar
  51. Steinbrecher T, Latzer J, Case DA (2012) Revised AMBER parameters for bioorganic phosphates. J Chem Theory Comput 8:4405–4412. doi: 10.1021/ct300613v CrossRefGoogle Scholar
  52. Taylor SS, Kornev AP (2011) Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem Sci 36:65–77. doi: 10.1016/j.tibs.2010.09.006 CrossRefGoogle Scholar
  53. Thomas LH, Forsyth VT, Šturcová A, Kennedy CJ, May RP, Altaner CM, Apperley DC, Wess TJ, Jarvis MC (2013) Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161:465–476. doi: 10.1104/pp.112.206359 CrossRefGoogle Scholar
  54. Tsekos I (1999) The sites of cellulose synthesis in algae: diversity and evolution of cellulose-synthesizing enzyme complexes. J Phycol 35:635–655. doi: 10.1046/j.1529-8817.1999.3540635.x CrossRefGoogle Scholar
  55. Vain T et al (2014) The cellulase KORRIGAN is part of the cellulose synthase complex. Plant Physiol 165:1521–1532. doi: 10.1104/pp.114.241216 CrossRefGoogle Scholar
  56. Vergara CE, Carpita NC (2001) β-d-glycan synthases and the CesA gene family: lessons to be learned from the mixed-linkage (1 → 3), (1 → 4)β-d-glucan synthase. Plant Mol Biol 47:145–160. doi: 10.1023/A:1010631431620 CrossRefGoogle Scholar
  57. Wang J, Howles PA, Cork AH, Birch RJ, Williamson RE (2006) Chimeric proteins suggest that the catalytic and/or C-terminal domains give CesA1 and CesA3 access to their specific sites in the cellulose synthase of primary walls. Plant Physiol 142:685–695. doi: 10.1104/pp.106.084004 CrossRefGoogle Scholar
  58. Whittinghofer A, Vetter IR (2011) Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem 80:943–971. doi: 10.1146/annurev-biochem-062708-134043 CrossRefGoogle Scholar
  59. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410. doi: 10.1093/nar/gkm290 CrossRefGoogle Scholar
  60. Williamson RE, Burn JE, Birch R, Baskin TI, Arioli T, Betzner AS, Cork A (2001) Morphology of rsw1, a cellulose-deficient mutant of Arabidopsis thaliana. Protoplasma 215:116–127. doi: 10.1007/BF01280308 CrossRefGoogle Scholar
  61. Woods AS, Ferre S (2005) Amazing stability of the arginine-phosphate electrostatic interaction. J Proteome Res 4:1397–1402. doi: 10.1021/pr050077s CrossRefGoogle Scholar
  62. Zhong RQ, Morrison WH, Freshour GD, Hahn MG, Ye ZH (2003) Expression of a mutant form of cellulose synthase AtCesA7 causes dominant negative effect on cellulose biosynthesis. Plant Physiol 132:786–795. doi: 10.1104/pp.102.019331 CrossRefGoogle Scholar
  63. Zhou Z (2012) Ensemble methods: foundations and algorithms. Machine learning and pattern recognition. Chapman & Hall/CRC Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Latsavongsakda Sethaphong
    • 1
  • Jonathan K. Davis
    • 2
  • Erin Slabaugh
    • 2
  • Abhishek Singh
    • 1
  • Candace H. Haigler
    • 2
    • 3
  • Yaroslava G. Yingling
    • 1
  1. 1.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA
  2. 2.Department of Crop ScienceNorth Carolina State UniversityRaleighUSA
  3. 3.Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations