Advertisement

Cellulose

, Volume 22, Issue 6, pp 4027–4034 | Cite as

Paper-based plasmon-enhanced protein sensing by controlled nucleation of silver nanoparticles on cellulose

  • Lokanathan R. Arcot
  • Khan Mohammad Ahsan Uddin
  • Xi Chen
  • Xiang Wenchao
  • Kong Xianming
  • Leena S. Johansson
  • Robin H. A. Ras
  • Orlando J. Rojas
Original Paper

Abstract

Cheap, disposable bio-diagnostic devices are becoming increasingly prevalent in the field of biosensing. Earlier we had reported the ability of cellulosic surface to control the nucleation of plasmonic silver nanoparticles and in this report we utilize this nucleation controlling property to demonstrate a new plasmonic sensing mechanism based on paper substrates to quantitatively detect proteins. On contrary to conventional paper based diagnostic devices which use the cellulosic part of paper as a support structure, the proposed method takes advantage of cellulose as nucleation controller during silver nanoparticle formation. Reduction of silver ions interacting competitively with nucleation controlling cellulosic surface and reduction suppressing amino acids of protein (via complexation) resulted in silver nanoparticles whose size–shape dependent plasmonic property quantitatively reflected the concentration of protein on paper, characterized using UV–Vis and surface-enhanced Raman spectroscopies. As a proof-of-concept, bovine serum albumin (BSA) was tested as the target analyte. UV–Vis spectroscopy based BSA quantification was sensitive in the concentration range 10–60 mg ml−1 while that for surface enhanced Raman spectroscopy extended well below 10 mg ml−1, thus demonstrating the potential of this simple method to quantitatively detect a wide range of proteins relevant to the field of biodiagnostics.

Keywords

Paper-biosensor Cellulose-biosensor Plasmonic-sensor Biodiagnostics 

Abbreviations

BSA

Bovine serum albumin

PTAP

4-Aminothiophenol

SERS

Surface enhanced Raman spectroscopy

UV–Vis

Ultra violet–visible light

XPS

X-ray photoelectron spectroscopy

Notes

Acknowledgments

Authors would like to thank the Academy of Finland for funding this study through its Centres of Excellence Programme (2014–2019) and under Project 132723612 HYBER. Authors also thank Joseph Campbell for XPS measurements.

References

  1. Cheng C, Martinez AW, Gong J, Mace CR, Phillips ST, Carrilho E, Mirica KA, Whitesides GM (2010) Paper-based ELISA. Angew Chem Int Ed 49:4771–4774. doi: 10.1002/anie.201001005 CrossRefGoogle Scholar
  2. Choi S, Choi EY, Kim DJ, Kim JH, Kim TS, Oh SW (2004) A rapid, simple measurement of human albumin in whole blood using a fluorescence immunoassay (I). Clin Chim Acta 339:147–156. doi: 10.1016/j.cccn.2003.10.002 CrossRefGoogle Scholar
  3. Jin H, Kettunen M, Laiho A, Pynnolnen H, Paltakari J, Marmur A, Ikkala O, Ras RHA (2011) Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir 27:1930–1934. doi: 10.1021/la103877r CrossRefGoogle Scholar
  4. Kim J-H, Kang K, Yun S, Yang S, Lee M-H, Kim J-H, Kim J (2008) Cellulose electroactive paper (EAPap): the potential for a novel electronic material. MRS Proc. doi: 10.1557/PROC-1129-V05-02 Google Scholar
  5. Kim J, Lee H, Kim HS (2010) Beam vibration control using cellulose-based electro-active paper sensor. Int J Precis Eng Manuf 11:823–827. doi: 10.1007/s12541-010-0099-8 CrossRefGoogle Scholar
  6. Lee SW, Kim JH, Kim J, Kim HS (2009) Characterization and sensor application of cellulose electro-active paper (EAPap). Chin Sci Bull 54:2703–2707. doi: 10.1007/s11434-009-0219-y CrossRefGoogle Scholar
  7. Lee CH, Hankus ME, Tian L, Pellegrino PM, Singamaneni S (2011) Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures. Anal Chem 83:8953–8958. doi: 10.1021/ac2016882 CrossRefGoogle Scholar
  8. Liu Q, Wang J, Wang B, Li Z, Huang H, Li C, Yu X, Chu PK (2014) Paper-based plasmonic platform for sensitive, noninvasive, and rapid cancer screening. Biosens Bioelectron 54:128–134. doi: 10.1016/j.bios.2013.10.067 CrossRefGoogle Scholar
  9. Lokanathan AR, Uddin KMA, Rojas OJ, Laine J (2014) Cellulose nanocrystal-mediated synthesis of silver nanoparticles: role of sulfate groups in nucleation phenomena. Biomacromolecules 15:373–379. doi: 10.1021/bm401613h CrossRefGoogle Scholar
  10. Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10. doi: 10.1021/ac9013989 CrossRefGoogle Scholar
  11. Merril CR (1990) Silver staining of proteins and DNA. Nature 343:779–780CrossRefGoogle Scholar
  12. Morones RJ, Frey W (2007) Environmentally sensitive silver nanoparticles of controlled size synthesized with PNIPAM as a nucleating and capping agent. Langmuir 23:8180–8186. doi: 10.1021/la7008336 CrossRefGoogle Scholar
  13. Nie Z, Nijhuis CA, Gong J, Chen X, Kumachev A, Andres MW, Narovlyansky M, Whitesides GM (2010) Electrochemical sensing in paper-based microfluidic devices. Lab Chip 10:477–483. doi: 10.1039/B917150A CrossRefGoogle Scholar
  14. Rozand C (2014) Paper-based analytical devices for point-of-care infectious disease testing. Eur J Clin Microbiol 33:147–156. doi: 10.1007/s10096-013-1945-2 CrossRefGoogle Scholar
  15. Wandowski T, Malinowski P, Ostachowicz WM (2011) Damage detection with concentrated configurations of piezoelectric transducers. Smart Mater Struct 20:025002–025016CrossRefGoogle Scholar
  16. Yu J, Ge L, Huang J, Wang S, Ge S (2011) Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab Chip 11:1286–1291. doi: 10.1039/C0LC00524J CrossRefGoogle Scholar
  17. Yuan J, Gaponik N, Eychmuller A (2012) Application of polymer quantum dot-enzyme hybrids in the biosensor development and test paper fabrication. Anal Chem 84:5047–5052. doi: 10.1021/ac300714j CrossRefGoogle Scholar
  18. Yun G, Kim J, Kim J, Kim S (2010) Fabrication and testing of cellulose EAPap actuators for haptic application. Sens Actuators A Phys 164:68–73. doi: 10.1016/j.sna.2010.09.005 CrossRefGoogle Scholar
  19. Zheng J, Zhou Y, Li X, Ji Y, Lu T, Gu R (2003) Surface-enhanced raman scattering of 4-aminothiophenol in assemblies of nanosized particles and the macroscopic surface of silver. Langmuir 19:632–636. doi: 10.1021/la011706p CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Lokanathan R. Arcot
    • 1
  • Khan Mohammad Ahsan Uddin
    • 2
  • Xi Chen
    • 2
  • Xiang Wenchao
    • 2
  • Kong Xianming
    • 2
  • Leena S. Johansson
    • 2
  • Robin H. A. Ras
    • 1
  • Orlando J. Rojas
    • 2
  1. 1.Department of Applied Physics, Aalto University School of ScienceAalto UniversityEspooFinland
  2. 2.Department of Forest Products TechnologyAalto UniversityEspooFinland

Personalised recommendations