, Volume 22, Issue 6, pp 3941–3953 | Cite as

Cellulose/nanoclay composite films with high water vapor resistance and mechanical strength

  • M. Farmahini-Farahani
  • Alemayehu H. Bedane
  • Y. Pan
  • H. Xiao
  • M. Eic
  • F. Chibante
Original Paper


Cellulose based films were fabricated by dissolving the micro-crystalline cellulose and cotton linter in a LiOH/urea aqueous system, followed by regeneration in acetone. The water vapor transmission rate (WVTR) values of the films were measured and the results indicated that regenerated micro-crystalline cellulose (RMCC) showed lower WTVR than regenerated cotton linter (RCL). WVTR values were proportional to the thickness of samples. The films also exhibited high oil resistance as no fat oil could pass through the RMCC and RCL films even after a week. The RMCC and RCL/natural-montmorillonite nanocomposites (Na-MMT) films were prepared and characterized. The effect of Na-MMT loading on the mechanical, crystallinity and water vapor transmission properties of the nanocomposites was further investigated. Na-MMT loading improved the mechanical properties and decreased the crystallinity of the nanocomposite films. The results indicated partially intercalated nano-layered structures with WVTR as low as 43 g/m2/day.


Regenerated-cellulose based film Water vapor barrier Nanocomposites Layered silicate 



Authors are grateful to NSERC Strategic Network—Innovative Green Wood Fibre Product (Canada), and NSF China (21466005) for funding.


  1. Andersson C (2008) New ways to enhance the functionality of paperboard by surface treatment—a review. Package Technol Sci 21:339–373CrossRefGoogle Scholar
  2. Arora A, Padua GW (2010) Review: nanocomposites in food packaging. J Food Sci 75:R43–R49CrossRefGoogle Scholar
  3. Aslanzadeh S, Haghighat Kish M, Katbab AA (2010) Effects of melt processing conditions on photo-oxidation of PP/PPgMA/OMMT composites. Polym Degrad Stab 95:1800–1809CrossRefGoogle Scholar
  4. Bedane AH, Eić M, Farmahini-Farahani M, Xiao H (2015a) Water vapor transport properties of regenerated cellulose and nanofibrillated cellulose films. J Membr Sci 493:46–57. doi: 10.1016/j.memsci.2015.06.009 CrossRefGoogle Scholar
  5. Bedane AH, Xiao H, Eić M, Farmahini-Farahani M (2015b) Structural and thermodynamic characterization of modified cellulose fiber-based materials and related interactions with water vapor. Appl Surf Sci 351:725–737. doi: 10.1016/j.apsusc.2015.06.022 CrossRefGoogle Scholar
  6. Cerruti P, Ambrogi V, Postiglione A, Rychlý J, Matisová-Rychlá L, Carfagna C (2008) Morphological and thermal properties of cellulose—montmorillonite nanocomposites. Biomacromolecules 9:3004–3013CrossRefGoogle Scholar
  7. Dányádi L, Janecska T, Szabó Z, Nagy G, Móczó J, Pukánszky B (2007) Wood flour filled PP composites: compatibilization and adhesion. Compos Sci Technol 67:2838–2846CrossRefGoogle Scholar
  8. Delhom CD, White-Ghoorahoo LA, Pang SS (2010) Development and characterization of cellulose/clay nanocomposites. Compos B Eng 41:475–481. doi: 10.1016/j.compositesb.2009.10.007 CrossRefGoogle Scholar
  9. Duan Z, Thomas NL (2014) Water vapour permeability of poly(lactic acid): crystallinity and the tortuous path model. J Appl Phys 115:1–9Google Scholar
  10. Feldman D (2001) Polymer barrier films. J Polym Environ 9:49–55CrossRefGoogle Scholar
  11. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. doi: 10.1007/s10570-013-0030-4 CrossRefGoogle Scholar
  12. Geng H, Yuan Z, Fan Q, Dai X, Zhao Y, Wang Z, Qin M (2014) Characterisation of cellulose films regenerated from acetone/water coagulants. Carbohydr Polym 102:438–444CrossRefGoogle Scholar
  13. Grijpma DW, Penning JP, Pennings AJ (1994) Chain entanglement, mechanical properties and drawability of poly(lactide). Colloid Polym Sci 272:1068–1081CrossRefGoogle Scholar
  14. Han J, Zhou C, French AD, Han G, Wu Q (2013) Characterization of cellulose II nanoparticles regenerated from 1-butyl-3-methylimidazolium chloride. Carbohydr Polym 94:773–781. doi: 10.1016/j.carbpol.2013.02.003 CrossRefGoogle Scholar
  15. Heinrich G, Vilgis TA (1993) Contribution of entanglements to the mechanical properties of carbon black filled polymer networks. Macromolecules 26:1109–1119CrossRefGoogle Scholar
  16. Ho TTT, Zimmermann T, Ohr S, Caseri WR (2012) Composites of cationic nanofibrillated cellulose and layered silicates: water vapor barrier and mechanical properties. ACS Appl Mater Interfaces 4:4832–4840CrossRefGoogle Scholar
  17. Khan A et al (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90:1601–1608CrossRefGoogle Scholar
  18. Khan A, Vu K, Chauve G, Bouchard J, Riedl B, Lacroix M (2014) Optimization of microfluidization for the homogeneous distribution of cellulose nanocrystals (CNCs) in biopolymeric matrix. Cellulose 21:3457–3468CrossRefGoogle Scholar
  19. Khwaldia K, Arab-Tehrany E, Desobry S (2010) Biopolymer coatings on paper packaging materials. Compr Rev Food Sci Food Saf 9:82–91. doi: 10.1111/j.1541-4337.2009.00095.x CrossRefGoogle Scholar
  20. Kisku SK, Dash S, Swain SK (2014) Dispersion of SiC nanoparticles in cellulose for study of tensile, thermal and oxygen barrier properties. Carbohydr Polym 99:306–310CrossRefGoogle Scholar
  21. Koponen A et al (1998) Permeability of three-dimensional random fiber webs. Phys Rev Lett 80:716–719CrossRefGoogle Scholar
  22. Lindstrand N (2013) Australian industry: renewable packaging - or you are out! Int Paperworld IPW 1:30–32Google Scholar
  23. Liu A, Walther A, Ikkala O, Belova L, Berglund LA (2011a) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12:633–641CrossRefGoogle Scholar
  24. Liu Z, Wang H, Li Z, Lu X, Zhang X, Zhang S, Zhou K (2011b) Characterization of the regenerated cellulose films in ionic liquids and rheological properties of the solutions. Mater Chem Phys 128:220–227. doi: 10.1016/j.matchemphys.2011.02.062 CrossRefGoogle Scholar
  25. Luo X, Zhang L (2013) New solvents and functional materials prepared from cellulose solutions in alkali/urea aqueous system. Food Res Int 52:387–400CrossRefGoogle Scholar
  26. Ma H, Hsiao BS, Chu B (2011) Thin-film nanofibrous composite membranes containing cellulose or chitin barrier layers fabricated by ionic liquids. Polymer 52:2594–2599CrossRefGoogle Scholar
  27. Mahmoudian S, Wahit MU, Ismail AF, Yussuf AA (2012) Preparation of regenerated cellulose/montmorillonite nanocomposite films via ionic liquids. Carbohydr Polym 88:1251–1257CrossRefGoogle Scholar
  28. Myllytie P, Salmén L, Haimi E, Laine J (2010) Viscoelasticity and water plasticization of polymer-cellulose composite films and paper sheets. Cellulose 17:375–385CrossRefGoogle Scholar
  29. Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9. doi: 10.1016/j.carbpol.2015.08.035 CrossRefGoogle Scholar
  30. Olewnik E, Garman K, Czerwiński W (2010) Thermal properties of new composites based on nanoclay, polyethylene and polypropylene. J Therm Anal Calorim 101:323–329CrossRefGoogle Scholar
  31. Pang J, Wu M, Zhang Q, Tan X, Xu F, Zhang X, Sun R (2015) Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid. Carbohydr Polym 121:71–78. doi: 10.1016/j.carbpol.2014.11.067 CrossRefGoogle Scholar
  32. Park HJ, Kim SH, Lim ST, Shin DH, Choi SY, Hwang KT (2000) Grease resistance and mechanical properties of isolated soy protein-coated paper. J Am Oil Chem Soc 77:269–273CrossRefGoogle Scholar
  33. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels. doi: 10.1186/1754-6834-3-10 Google Scholar
  34. Rhim JW (2007) Mechanical and water barrier properties of biopolyester films prepared by thermo-compression. Food Sci Biotechnol 16:62–66Google Scholar
  35. Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18:127–134CrossRefGoogle Scholar
  36. Shogren R (1997) Water vapor permeability of biodegradable polymers. J Environ Polym Degrad 5:91–95CrossRefGoogle Scholar
  37. Sui L, Huang L, Podsiadlo P, Kotov NA, Kieffer J (2010) Brillouin light scattering investigation of the mechanical properties of layer-by-layer assembled cellulose nanocrystal films. Macromolecules 43:9541–9548CrossRefGoogle Scholar
  38. Tang L, Li X, Du D, He C (2012) Fabrication of multilayer films from regenerated cellulose and graphene oxide through layer-by-layer assembly. Prog Nat Sci Mater Int 22:341–346CrossRefGoogle Scholar
  39. Thomas NL (1991) Barrier properties of paint coatings. Prog Org Coat 19:101–121CrossRefGoogle Scholar
  40. Tsuji H, Okino R, Daimon H, Fujie K (2006) Water vapor permeability of poly(lactide)s: effects of molecular characteristics and crystallinity. J Appl Polym Sci 99:2245–2252CrossRefGoogle Scholar
  41. Xiao C, Gao S, Zhang L, Wei H (2001) Water-resistant cellulose films coated with polyurethane-acrylamide grafted konjac glucomannan. J Macromol Sci Pure Appl Chem 38A:33–42CrossRefGoogle Scholar
  42. Xue M, Wang S (2012) The analysis of relationships between surface porosity and air permeability of paper (board). Adv Mater Res 396:1426–1429Google Scholar
  43. Yang Q, Fukuzumi H, Saito T, Isogai A, Zhang L (2011) Transparent cellulose films with high gas barrier properties fabricated from aqueous alkali/urea solutions. Biomacromolecules 12:2766–2771CrossRefGoogle Scholar
  44. Yang Q, Fujisawa S, Saito T, Isogai A (2012a) Improvement of mechanical and oxygen barrier properties of cellulose films by controlling drying conditions of regenerated cellulose hydrogels. Cellulose 19:695–703CrossRefGoogle Scholar
  45. Yang Q, Saito T, Isogai A (2012b) Facile fabrication of transparent cellulose films with high water repellency and gas barrier properties. Cellulose 19:1913–1921CrossRefGoogle Scholar
  46. Yang Q, Wu CN, Saito T, Isogai A (2014) Cellulose–clay layered nanocomposite films fabricated from aqueous cellulose/LiOH/urea solution. Carbohydr Polym 100:179–184CrossRefGoogle Scholar
  47. Zhang L, Mao Y, Zhou J, Cai J (2005) Effects of coagulation conditions on the properties of regenerated cellulose films prepared in NaOH/Urea aqueous solution. Ind Eng Chem Res 44:522–529CrossRefGoogle Scholar
  48. Zhang W, Xiao H, Qian L (2014) Enhanced water vapour barrier and grease resistance of paper bilayer-coated with chitosan and beeswax. Carbohydr Polym 101:401–406CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • M. Farmahini-Farahani
    • 1
  • Alemayehu H. Bedane
    • 1
  • Y. Pan
    • 2
  • H. Xiao
    • 1
  • M. Eic
    • 1
  • F. Chibante
    • 1
  1. 1.Department of Chemical EngineeringUniversity of New BrunswickFrederictonCanada
  2. 2.Guangxi Key Lab of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical EngineeringGuangxi UniversityNanningChina

Personalised recommendations