Advertisement

Cellulose

, Volume 22, Issue 5, pp 3199–3215 | Cite as

Characterization of mechanical and morphological properties of cellulose reinforced polyamide 6 composites

  • Yucheng Peng
  • Douglas J. Gardner
  • Yousoo Han
Original Paper

Abstract

The utilization of cellulose in reinforcing engineering thermoplastics through melt compounding processes is an argumentative topic in the natural fiber research community. Three different cellulosic materials were used to reinforce polyamide 6 (PA6) at three loading levels (2.5, 5 and 10 % by weight): (1) microcrystalline cellulose, (2) spray-dried cellulose nanofibrils (CNFs) and (3) spray-dried cellulose nanocrystals (CNCs). The particle size, morphology, and thermostability of cellulose were determined using laser diffraction, scanning electron microscopy (SEM), and thermogravimetric analysis. Compounding of cellulose with PA6 was conducted using a batch mixer at 232 °C and testing samples were produced using an injection molder at 270 °C. Slight mass loss of cellulose was observed at 232 °C while serious thermal degradation occurred at 270 °C. No serious thermal degradation of cellulose was observed in the composites because the cellulose materials were exposed to injection molding processing temperatures for a short time period. The mechanical testing results indicated that tensile modulus and strength of the composites were improved by adding cellulose while cellulose had negligible effect on the flexural properties. Impact strength decreased significantly by adding cellulose because of the poor distribution of cellulose particles throughout the matrix using the batch mixing process. Optimized mixing with improved distribution of cellulose are necessary to explore the potential reinforcing effect of cellulose, especially CNF and CNC in PA6. The SEM micrographs showed that there were no agglomerations among the cellulose particles, indicating that spray-dried cellulose materials could be suitable reinforcements in polymer-based composites.

Keywords

Cellulose Nanocellulose Polyamide 6 Nanocomposites Melt compounding 

Notes

Acknowledgments

We acknowledge the finical support from Maine Economic Improvement Fund and the USDA Forest Service Forest Product Laboratory. The content and information does not necessarily reflect the position of the funding agencies. Much appreciation goes to J. Rettenmaier and Söhne GMBH Company for donating the cellulose nanofibrils.

References

  1. Alloin F, D’Aprea A, Dufresne A, El Kissi N, Bossard F (2011) Poly(oxyethylene) and ramie whiskers based nanocomposites: influence of processing: extrusion and casting/evaporation. Cellulose 18:957–973CrossRefGoogle Scholar
  2. Beecher JF (2007) Organic materials: wood, trees and nanotechnology. Nat Nanotechnol 2:466–467CrossRefGoogle Scholar
  3. Corrêa AC, de Morais Teixeira E, Carmona VB, Teodoro KBR, Ribeiro C, Mattoso LHCM, Marconcini JM (2013) Obtaining nanocomposites of polyamide 6 and cellulose whiskers via extrusion and injection molding. Cellulose 21:311–322CrossRefGoogle Scholar
  4. Dharaiya D, Jana SC, Shafi A (2003) A study on the use of phenoxy resins as compatibilizers of polyamide 6 (PA6) and polybutylene terephthalate (PBT). Polym Eng Sci 43:580–595CrossRefGoogle Scholar
  5. Diddens I, Murphy B, Krisch M, Muller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41:9755–9759CrossRefGoogle Scholar
  6. Du Y, Wu T, Yan N, Kortschot MT, Farnood R (2013) Pulp fiber-reinforced thermoset polymer composites: effects of the pulp fibers and polymer. Compos Part B 48:10–17CrossRefGoogle Scholar
  7. Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter, BerlinCrossRefGoogle Scholar
  8. Fu S, Feng X, Lauke B, Mai Y (2008) Effect of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos Part B 39:933–961CrossRefGoogle Scholar
  9. Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567CrossRefGoogle Scholar
  10. Goring DAI (1963) Thermal softening of lignin, hemicelluloses and cellulose. Pulp Pap Mag Can 64(12):T517–T527Google Scholar
  11. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRefGoogle Scholar
  12. Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3(3):929–980Google Scholar
  13. Ifuku S, Saimoto H (2012) Chitin nanofibers: preparations, modifications, and applications. Nanoscale 4(11):3308–3318CrossRefGoogle Scholar
  14. Iwatake A, Nogi M, Yano H (2008) Cellulose nanofibers-reinforced polylactic acid. Compos Sci Technol 68:2103–2106CrossRefGoogle Scholar
  15. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRefGoogle Scholar
  16. Le Corre D, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromolecules 11(5):1139–1153CrossRefGoogle Scholar
  17. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 4:377–445CrossRefGoogle Scholar
  18. Moon RJ, Marini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  19. Orts WJ, Shey J, Imam SH, Glenn GM, Guttman ME, Revol J (2005) Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ 13:301–306CrossRefGoogle Scholar
  20. Peng Y, Gardner DJ, Han Y (2012a) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19(1):91–102CrossRefGoogle Scholar
  21. Peng Y, Han Y, Gardner DJ (2012b) Spray-drying cellulose nanofibrils: effect of drying process parameters on particle morphology and size distribution. Wood Fiber Sci 44(4):448–461Google Scholar
  22. Peng Y, Gardner DJ, Han Y, Kiziltas A, Cai Z, Tshabalala MA (2013a) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20(5):2379–2392CrossRefGoogle Scholar
  23. Peng Y, Gardner DJ, Han Y, Cai Z, Tshabalala MA (2013b) Influence of drying method on the surface energy of cellulose nanofibrils determined by inverse gas chromatography. J Colloid Interface Sci 405:85–95CrossRefGoogle Scholar
  24. Peng Y, Gallegos SA, Gardner DJ, Han Y, Cai Z (2014) Maleic anhydride polypropylene modified cellulose nanofibril polypropylene nanocomposites with enhanced impact strength. Polym Compos. doi: 10.1002/pc.23235 Google Scholar
  25. Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacomolecules 5:1671–1677CrossRefGoogle Scholar
  26. Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposites field. Biomacromolecules 6(2):612–626CrossRefGoogle Scholar
  27. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  28. Wegner TH, Jones PE (2006) Advancing cellulose-based nanotechnology. Cellulose 13:115–118CrossRefGoogle Scholar
  29. Yang H, Gardner DJ (2011) Mechanical properties of cellulose nanofibril-filled polypropylene composites. Wood Fiber Sci 43:143–152Google Scholar
  30. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788CrossRefGoogle Scholar
  31. Yousefian H, Rodrigue D (2014) Effect of nanocrystalline cellulose on morphological, thermal, and mechanical properties of nylon 6 composites. Polym Compos. doi: 10.1002/pc.23316 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Yucheng Peng
    • 1
  • Douglas J. Gardner
    • 2
    • 3
  • Yousoo Han
    • 2
    • 3
  1. 1.Department of Materials Science and EngineeringClemson UniversityClemsonUSA
  2. 2.AEWC Advanced Structures and Composites CenterUniversity of MaineOronoUSA
  3. 3.School of Forest ResourcesUniversity of MaineOronoUSA

Personalised recommendations