Skip to main content
Log in

Characterization of mechanical and morphological properties of cellulose reinforced polyamide 6 composites

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The utilization of cellulose in reinforcing engineering thermoplastics through melt compounding processes is an argumentative topic in the natural fiber research community. Three different cellulosic materials were used to reinforce polyamide 6 (PA6) at three loading levels (2.5, 5 and 10 % by weight): (1) microcrystalline cellulose, (2) spray-dried cellulose nanofibrils (CNFs) and (3) spray-dried cellulose nanocrystals (CNCs). The particle size, morphology, and thermostability of cellulose were determined using laser diffraction, scanning electron microscopy (SEM), and thermogravimetric analysis. Compounding of cellulose with PA6 was conducted using a batch mixer at 232 °C and testing samples were produced using an injection molder at 270 °C. Slight mass loss of cellulose was observed at 232 °C while serious thermal degradation occurred at 270 °C. No serious thermal degradation of cellulose was observed in the composites because the cellulose materials were exposed to injection molding processing temperatures for a short time period. The mechanical testing results indicated that tensile modulus and strength of the composites were improved by adding cellulose while cellulose had negligible effect on the flexural properties. Impact strength decreased significantly by adding cellulose because of the poor distribution of cellulose particles throughout the matrix using the batch mixing process. Optimized mixing with improved distribution of cellulose are necessary to explore the potential reinforcing effect of cellulose, especially CNF and CNC in PA6. The SEM micrographs showed that there were no agglomerations among the cellulose particles, indicating that spray-dried cellulose materials could be suitable reinforcements in polymer-based composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alloin F, D’Aprea A, Dufresne A, El Kissi N, Bossard F (2011) Poly(oxyethylene) and ramie whiskers based nanocomposites: influence of processing: extrusion and casting/evaporation. Cellulose 18:957–973

    Article  CAS  Google Scholar 

  • Beecher JF (2007) Organic materials: wood, trees and nanotechnology. Nat Nanotechnol 2:466–467

    Article  CAS  Google Scholar 

  • Corrêa AC, de Morais Teixeira E, Carmona VB, Teodoro KBR, Ribeiro C, Mattoso LHCM, Marconcini JM (2013) Obtaining nanocomposites of polyamide 6 and cellulose whiskers via extrusion and injection molding. Cellulose 21:311–322

    Article  Google Scholar 

  • Dharaiya D, Jana SC, Shafi A (2003) A study on the use of phenoxy resins as compatibilizers of polyamide 6 (PA6) and polybutylene terephthalate (PBT). Polym Eng Sci 43:580–595

    Article  CAS  Google Scholar 

  • Diddens I, Murphy B, Krisch M, Muller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41:9755–9759

    Article  CAS  Google Scholar 

  • Du Y, Wu T, Yan N, Kortschot MT, Farnood R (2013) Pulp fiber-reinforced thermoset polymer composites: effects of the pulp fibers and polymer. Compos Part B 48:10–17

    Article  CAS  Google Scholar 

  • Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter, Berlin

    Book  Google Scholar 

  • Fu S, Feng X, Lauke B, Mai Y (2008) Effect of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos Part B 39:933–961

    Article  Google Scholar 

  • Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567

    Article  CAS  Google Scholar 

  • Goring DAI (1963) Thermal softening of lignin, hemicelluloses and cellulose. Pulp Pap Mag Can 64(12):T517–T527

    CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  • Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3(3):929–980

    Google Scholar 

  • Ifuku S, Saimoto H (2012) Chitin nanofibers: preparations, modifications, and applications. Nanoscale 4(11):3308–3318

    Article  CAS  Google Scholar 

  • Iwatake A, Nogi M, Yano H (2008) Cellulose nanofibers-reinforced polylactic acid. Compos Sci Technol 68:2103–2106

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Le Corre D, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromolecules 11(5):1139–1153

    Article  Google Scholar 

  • Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 4:377–445

    Article  Google Scholar 

  • Moon RJ, Marini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Orts WJ, Shey J, Imam SH, Glenn GM, Guttman ME, Revol J (2005) Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ 13:301–306

    Article  CAS  Google Scholar 

  • Peng Y, Gardner DJ, Han Y (2012a) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19(1):91–102

    Article  CAS  Google Scholar 

  • Peng Y, Han Y, Gardner DJ (2012b) Spray-drying cellulose nanofibrils: effect of drying process parameters on particle morphology and size distribution. Wood Fiber Sci 44(4):448–461

    CAS  Google Scholar 

  • Peng Y, Gardner DJ, Han Y, Kiziltas A, Cai Z, Tshabalala MA (2013a) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20(5):2379–2392

    Article  CAS  Google Scholar 

  • Peng Y, Gardner DJ, Han Y, Cai Z, Tshabalala MA (2013b) Influence of drying method on the surface energy of cellulose nanofibrils determined by inverse gas chromatography. J Colloid Interface Sci 405:85–95

    Article  CAS  Google Scholar 

  • Peng Y, Gallegos SA, Gardner DJ, Han Y, Cai Z (2014) Maleic anhydride polypropylene modified cellulose nanofibril polypropylene nanocomposites with enhanced impact strength. Polym Compos. doi:10.1002/pc.23235

    Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacomolecules 5:1671–1677

    Article  CAS  Google Scholar 

  • Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposites field. Biomacromolecules 6(2):612–626

    Article  CAS  Google Scholar 

  • Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  • Wegner TH, Jones PE (2006) Advancing cellulose-based nanotechnology. Cellulose 13:115–118

    Article  CAS  Google Scholar 

  • Yang H, Gardner DJ (2011) Mechanical properties of cellulose nanofibril-filled polypropylene composites. Wood Fiber Sci 43:143–152

    CAS  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  • Yousefian H, Rodrigue D (2014) Effect of nanocrystalline cellulose on morphological, thermal, and mechanical properties of nylon 6 composites. Polym Compos. doi:10.1002/pc.23316

    Google Scholar 

Download references

Acknowledgments

We acknowledge the finical support from Maine Economic Improvement Fund and the USDA Forest Service Forest Product Laboratory. The content and information does not necessarily reflect the position of the funding agencies. Much appreciation goes to J. Rettenmaier and Söhne GMBH Company for donating the cellulose nanofibrils.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yucheng Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Gardner, D.J. & Han, Y. Characterization of mechanical and morphological properties of cellulose reinforced polyamide 6 composites. Cellulose 22, 3199–3215 (2015). https://doi.org/10.1007/s10570-015-0723-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0723-y

Keywords

Navigation