, Volume 22, Issue 5, pp 3477–3489 | Cite as

How much the fabric grammage may affect cotton combustion?

  • Jenny Alongi
  • Fabio Cuttica
  • Federico Carosio
  • Serge Bourbigot
Original Paper


The present article is addressed to investigating the effect of different fabric grammages (mass per area unit) on cotton combustion. To this aim, 100, 200 and 400 g/m2 cotton fabrics were tested when exposed to (1) two different heat fluxes (25 and 35 kW/m2) under a cone calorimeter, (2) a methane flame in horizontal or vertical flame spread tests or (3) a propane flame in Limiting Oxygen Index tests, and (4) when pyrolysed and further oxidised in pyrolysis-combustion flow calorimetry (PCFC). The collected results demonstrated a precise relationship between fabric grammage and cotton combustion behaviour. Indeed, when exposed to a 35-kW/m2 heat flux, the higher the fabric grammage, the higher the total heat release during combustion was; the opposite trend was observed when the same fabrics were pyrolysed and further oxidised in PCFC. This finding was ascribed to the different scenarios described by these instrumentations; indeed, the cone calorimeter was able to reproduce cotton combustion in a well-ventilated context in the presence of air (thus, oxygen), while PCFC only represented the combustion of pyrolysis products. However, both techniques indirectly evidenced a linear dependence of char formation as a function of fabric grammage: the higher the fabric grammage, the larger the amount of char formed was. The same trend was also observed during horizontal and vertical flame spread tests. In conclusion, the present article is intended to show how cotton combustion may be affected by fabric grammage as well as how such behaviour is influenced by the experimental conditions in which it is investigated.


Cotton Combustion Cone calorimeter PCFC LOI Flame spread tests 



The authors thank the European COST Action FLARETEX (MP1105) “Sustainable flame retardancy for textiles and related materials based on nanoparticles substituting conventional chemicals”. In addition, the authors want to thank Mr. Andrea Messina and Mr. Alessandro Di Blasio for the PCFC tests and SEM observations, respectively. In addition, we thank Dr. Gabriella Fusi and Centro Tessile e Cotoniero (Busto Arsizio, Italy) for the measurements regarding the fabric weave.


  1. Alongi J, Malucelli G (2015) Cotton flame retardancy: state of the art and future perspectives. RSC Adv 5:24239–24263. doi: 10.1039/C5RA01176K CrossRefGoogle Scholar
  2. Alongi J, Camino G, Malucelli G (2013a) Heating rate effect on char yield from cotton, poly(ethylene terephthalate) and blend fabrics. Carbohydr Polym 92:1327–1334. doi: 10.1016/j.carbpol.2012.10.029 CrossRefGoogle Scholar
  3. Alongi J, Carosio F, Horrocks AR, Malucelli G (2013b) Update on flame retardant textiles: state of the art, environmental issues and innovative solutions. Smithers RAPRA Publishing, ShawburyGoogle Scholar
  4. Alongi J, Carosio F, Malucelli G (2014a) Current emerging techniques to impart flame retardancy to fabrics. Polym Degrad Stab 106:138–149. doi: 10.1016/j.polymdegradstab.2013.07.012 CrossRefGoogle Scholar
  5. Alongi J, Milnes J, Malucelli G, Bourbigot S, Kandola B (2014b) Thermal degradation of DNA-treated cotton fabrics under different heating conditions. J Anal Appl Pyrolysis 108:212–221. doi: 10.1016/j.jaap.2014.04.014 CrossRefGoogle Scholar
  6. ASTM D2863 (2006) Standard test method for measuring the minimum oxygen concentration to support candle-like combustion of plastics (oxygen index). American Society for Testing and Materials International, West Conshohocken (Pennsylvania)Google Scholar
  7. ASTM D7309 (2013) Standard test method for determining flammability characteristics of plastics and other solid materials using microscale combustion calorimetry. American Society for Testing and Materials International, West Conshohocken (Pennsylvania)Google Scholar
  8. Basak S (2015) Fire retardant cellulosic textile using banana pseudostem sap. Pol J Chem Technol 17:123–133CrossRefGoogle Scholar
  9. Basak S, Samanta KK, Chattopadhyaya SK (2014) Fire retardant property of the cotton fabric treated with herbal extract. J Text Inst. doi: 10.1080/00405000.2014.995456 Google Scholar
  10. Basak S, Samanta KK, Chattopadhyay SK, Narkar R (2015a) Thermally stable cellulosic paper made using banana pseudostem sap, a wasted by-product. Cellulose. doi: 10.1007/s10570-015-0662-7 Google Scholar
  11. Basak S, Samanta KK, Chattopadhyay SK, Narkar R (2015b) Self-extinguishable ligno-cellulosic fabric using banana pseudostem sap. Curr Sci 108:372–383Google Scholar
  12. Bourbigot S, Chlebicki S, Mamleev V (2002) Thermal degradation of cotton under linear heating. Polym Degrad Stab 78:57–62. doi: 10.1016/S01413910(02)00119-2 CrossRefGoogle Scholar
  13. Ceylan O, Alongi J, Van Landuyt L, Frache A, De Clerck K (2013) Combustion characteristics of cellulosic loose fibres. Fire Mater 37:482–490. doi: 10.1002/fam.2147 CrossRefGoogle Scholar
  14. Faroq AA, Price D, Milnes GJ, Horrocks AR (1991) Use of gas chromatographic analysis of volatile products to investigate the mechanisms underlying the influence of flame retardants on the pyrolysis of cellulose in air. Polym Degrad Stab 33:155–170. doi: 10.1016/0141-3910(91)90015-J CrossRefGoogle Scholar
  15. Gordon S, Hsie YL (2007) Cotton: science and technology. Woodhead Publishing Limited and CRC Press, Boca Raton (FL)CrossRefGoogle Scholar
  16. Horrocks AR (1983) An introduction to the burning behaviour of cellulosic fibres. J Soc Dyes Colour 99:191–197. doi: 10.1111/j.1478-4408.1983.tb03686.x CrossRefGoogle Scholar
  17. Horrocks RA (1996) Developments in flame retardants for heat and fire resistant textiles—the role of char and intumescence. Polym Degrad Stab 54:143–154. doi: 10.1016/S0141-3910(96)00038-9 CrossRefGoogle Scholar
  18. Horrocks AR (2011) Flame retardant challenges for textiles and fibres: new chemistry versus innovatory solutions. Polym Degrad Stab 96:377–392. doi: 10.1016/j.polymdegradstab.2010.03.036 CrossRefGoogle Scholar
  19. ISO 13943 (2007) Fire safety—vocabulary. International Organization for Standardization, GenevaGoogle Scholar
  20. ISO 3572 (1976) Textiles—weaves—definition of general terms and basic weaves. International Organization for Standardization, GenevaGoogle Scholar
  21. ISO 5660 (2002) Fire test, reaction to fire, rate of heat release (cone calorimeter method). International Organization for Standardization, GenevaGoogle Scholar
  22. Kandola BK, Horrocks AR (1999) Complex char formation in flame-retarded fiber/intumescent combinations: physical and chemical nature of char1. Text Res J 69:374–381. doi: 10.1177/004051759906900512 CrossRefGoogle Scholar
  23. Kandola BJ, Horrocks RA, Price D, Coleman GV (1996) Flame retardant treatments of cellulose and their influence on the mechanism of cellulose pyrolysis. J Macromol Sci—Rev Macromol Chem Phys C36:721–794. doi: 10.1080/15321799608014859 CrossRefGoogle Scholar
  24. Lowden LA, Hull TR (2013) Flammability behaviour of wood and a review of the methods for its reduction. Fire Sci Rev 2:4. doi: 10.1186/2193-0414-2-4 CrossRefGoogle Scholar
  25. Lyon RE, Walters RN (2004) Pyrolysis combustion flow calorimetry. J Anal Appl Pyrolysis 71:27–46. doi: 10.1016/S0165-2370(03)00096-2 CrossRefGoogle Scholar
  26. Lyon RE, Takemori MT, Safronava N, Stoliarov SI, Walters RN (2009) A molecular basis for polymer flammability. Polymer 50:2608–2617. doi: 10.1016/j.polymer.2009.03.047 CrossRefGoogle Scholar
  27. Malucelli G, Bosco F, Alongi J, Carosio F, Di Blasio A, Mollea C, Cuttica F, Casale A (2014) Biomacromolecules as novel green flame retardant systems for textiles: an overview. RSC Adv 4:46024–46039. doi: 10.1039/C4RA06771A CrossRefGoogle Scholar
  28. Mamleev V, Bourbigot S, Le Bras M, Yvon J (2009) The facts and hypotheses relating to the phenomenological model of cellulose pyrolysis: interdependence of the steps. J Anal Appl Pyrolysis 84:1–17. doi: 10.1016/j.jaap.2008.10.014 CrossRefGoogle Scholar
  29. Morterra C, Low MJD (1983) IR studies of carbons-II. Carbon 21:283–288. doi: 10.1016/0008-6223(83)90092-1 CrossRefGoogle Scholar
  30. Morterra C, Low MJD (1984) An infrared spectroscopic approach to the characterization of intermediate chars. Mater Lett 2:289–293. doi: 10.1016/0167-577X(84)90134-4 CrossRefGoogle Scholar
  31. Morterra C, Low MJD (1985) An infrared spectroscopic study of some carbonaceous materials. Mater Chem Phys 12:207–233. doi: 10.1016/0254-0584(85)90094-X CrossRefGoogle Scholar
  32. Price D, Horrocks RA, Akalin M, Faroq AA (1997) Influence of flame retardants on the mechanism of pyrolysis of cotton (cellulose) fabrics in air. J Anal Appl Pyrolysis 40–41:511–524. doi: 10.1016/S0165-2370(97)00043-0 CrossRefGoogle Scholar
  33. Schartel B, Hull TR (2007) Development of fire-retarded materials-interpretation of cone calorimeter data. Fire Mater 31:327–354. doi: 10.1002/fam.949 CrossRefGoogle Scholar
  34. Sekiguchi Y, Frye JS, Shafizadeh F (1983) Structure and formation of cellulosic chars. J Appl Polym Sci 28:3513–3525. doi: 10.1002/app.1983.070281116 CrossRefGoogle Scholar
  35. Shafizadeh F, Fu YL (1973) Pyrolysis of cellulose. Carbohydr Res 29:113–122. doi: 10.1016/S0008-6215(00)82074-1 CrossRefGoogle Scholar
  36. Shafizadeh F, Sekiguchi Y (1983) Development of aromaticity in cellulosic chars. Carbon 21:511–516. doi: 10.1016/0008-6223(83)90144-6 CrossRefGoogle Scholar
  37. Shafizadeh F, Sekiguchi Y (1984) Oxidation of chars during smoldering combustion of cellulosic materials. Combust Flame 55:171–179. doi: 10.1016/0010-2180(84)90025-7 CrossRefGoogle Scholar
  38. Tata J, Alongi J, Carosio F, Frache A (2011) Optimization of the procedure to burn textile fabrics by cone calorimeter: part I. Combustion behavior of polyester, Fire Mater 35:397–409. doi: 10.1002/fam.1061 CrossRefGoogle Scholar
  39. UNI EN 1049 (1996) Woven fabrics—construction—methods of analysis. Ente Nazionale Italiano di Unificazione, Milano (Italy)Google Scholar
  40. Wakelyn PJ, Bertoniere NR, French AD, Thibodeaux DP, Triplett BA, Rousselle MA, Goynes WR, Edwards JV, Hunter L, McAlister DD, Gamble GR (2006) Cotton fiber chemistry and technology. CRC Press, Boca Raton (FL)CrossRefGoogle Scholar
  41. Weil E, Hirschler M, Patel N, Said M, Shakir S (1992) Oxygen index: correlations to other fire tests. Fire Mater 16:159–167. doi: 10.1002/fam.810160402 CrossRefGoogle Scholar
  42. Yang CQ, Hu Y (2011) Applications of micro-scale combustion calorimetry to the studies of cotton and nylon fabrics treated with organophosphorus flame retardants. J Anal Appl Pyrolysis 91:125–133. doi: 10.1016/j.jaap.2011.01.012 CrossRefGoogle Scholar
  43. Yang CQ, Hu Y (2012) Textile heat release properties measured by microscale combustion calorimetry: experimental repeatability. Fire Mater 36:127–137. doi: 10.1002/fam.1093 CrossRefGoogle Scholar
  44. Yang CQ, He Q, Lyon RE, Hu Y (2010) Investigation of the flammability of different textile fabrics using micro-scale combustion calorimetry. Polym Degrad Stab 95:108–115. doi: 10.1016/j.polymdegradstab.2009.11.047 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jenny Alongi
    • 1
  • Fabio Cuttica
    • 1
  • Federico Carosio
    • 1
  • Serge Bourbigot
    • 2
  1. 1.Dipartimento di Scienza Applicata e TecnologiaPolitecnico di Torino and Local INSTM UnitAlessandriaItaly
  2. 2.Unité Matériaux et Transformations (UMET) - CNRS UMR 8207R2Fire Group-Ecole Nationale Supérieure de Chimie de Lille CS 90108Villeneuve d’AscqFrance

Personalised recommendations