Advertisement

Cellulose

, Volume 22, Issue 4, pp 2717–2727 | Cite as

Highly hydrophilic and anti-fouling cellulose thin film composite membrane based on the hierarchical poly(vinyl alcohol-co-ethylene) nanofiber substrate

  • Mufang Li
  • Zhihong Wu
  • Mengying Luo
  • Wenwen Wang
  • Kangqi Chang
  • Ke Liu
  • Qiongzhen Liu
  • Ming Xia
  • Dong Wang
Original Paper

Abstract

Thin film composite (TFC) membrane is one of the most promising technologies in the purification field. In this study, a novel highly hydrophilic and anti-fouling cellulose TFC membrane was prepared based on the hierarchical poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofiber substrate. The morphology and hydrophilicity of the hierarchical PVA-co-PE nanofiber substrate and the cellulose TFC membrane were analyzed by SEM, FESEM, and contact angle goniometry. To optimize the performance of cellulose TFC membrane, the effects of coagulation bath, cellulose concentration and thickness of cellulose layer on the filtration efficiency, water flux as well as the mechanical property were studied. The anti-fouling property of the cellulose TFC membrane was analyzed by testing the change in the flux of membrane during repeated bovine serum albumin (BSA) filtrating and fouling process. The results show that the filtration efficiency of cellulose TFC membrane to BSA with the diameter of 2–10 nm could be above 97 %. Due to the hydrophilicity of the top cellulose layer, the cellulose TFC membrane exhibits excellent anti-fouling property by showing the 100 % flux recovery ratio.

Keywords

Cellulose Thin film composite membrane Hydrophilicity Anti-fouling Hierarchical PVA-co-PE nanofiber substrate 

Notes

Acknowledgments

The authors were thankful to the financial support of National Nature Science Foundation (51403166, 51473129 and 51273152), “863’’ Special Project on Functional Nanomaterials (2013AA031802), Nature Science Foundation of Hubei Province (2014CFB759) and Program for New Century Excellent Talents in University (NCET-12-0711).

Supplementary material

10570_2015_682_MOESM1_ESM.docx (8.4 mb)
Supplementary material 1 (DOCX 8599 kb)

References

  1. An QF, Li F, Ji YL, Chen HL (2011) Influence of polyvinyl alcohol on the surface morphology, separation and anti-fouling performance of the composite polyamide nanofiltration membranes. J Membr Sci 367:158–165CrossRefGoogle Scholar
  2. Bai HW, Zan XL, Juay J, Sun DD (2015) Hierarchical heteroarchitectures functionalized membrane for high efficient water purification. J Membr Sci 475:245–251CrossRefGoogle Scholar
  3. Cadotte JE, Cobian KE, Forester RH, Petersen RJ (1976) Continued evaluation of in situ-formed condensation polymers for reverse osmosis membranes. Office of Water Research and technology, Washington, DC, NTIS Report No. PB-253193, NTIS Issue No. 197616Google Scholar
  4. Cadotte JE, Steuck MJ, Petersen RJ (1978) Research on in situ-formed condensation polymer for reverse osmosis membranes. Office of Water Research and technology, Washington, DC, NTIS Report No. PB-288387, NTIS Issue No. 197905Google Scholar
  5. Dumée LF, He L, King PC, Moing ML, Güller L, Duke M, Hodgson PD, Gray S, Poole AJ, Kong LX (2015) Towards integrated anti-microbial capabilities: novel bio-fouling resistant membranes by high velocity embedment of silver particles. J Membr Sci 475:552–561CrossRefGoogle Scholar
  6. Fu FY, Guo Y, Wang Y, Tan QY, Zhou JP, Zhang LN (2014) Structure and properties of the regenerated cellulose membranes prepared from cellulose carbamate in NaOH/ZnO aqueous solution. Cellulose 21:2819–2830CrossRefGoogle Scholar
  7. Huang JJ, Wang D, Lu Y, Li MF, Xu WL (2013) Surface zwitterionically functionalized PVA-co-PE nanofiber materials by click chemistry. RSC Adv 3:20922–20929CrossRefGoogle Scholar
  8. Ismail AF, Padaki M, Hilal N, Matsuura T, Lau WJ (2015) Thin film composite membrane—recent development and future potential. Desalination 356:140–148CrossRefGoogle Scholar
  9. Jiang ZW, Lu A, Zhou JP, Zhang LN (2012) Interaction between −OH groups of methylcellulose and solvent in NaOH/urea aqueous system at low temperature. Cellulose 19:671–678CrossRefGoogle Scholar
  10. Karim Z, Mathew AP, Grahn M, Mouzon J, Oksman K (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr Polym 112:668–676CrossRefGoogle Scholar
  11. Kim SS, Lee J (2014) Water disinfection activity of ellulose filters treated with polycarboxylic acid and aromatic amine. Cellulose 21:4511–4518CrossRefGoogle Scholar
  12. Li XL, Zhu LP, Zhu BK, Xu YY (2011) High-flux and anti-fouling cellulose nanofiltration membranes prepared via phase inversion with ionic liquid as solvent. Sep Purif Technol 83:66–73CrossRefGoogle Scholar
  13. Li MF, Wang D, Xiao R, Sun G, Zhao QH, Li HY (2013a) A novel high flux poly(trimethylene terephthalate) nanofiber membrane for microfiltration media. Sep Purif Technol 116:199–205CrossRefGoogle Scholar
  14. Li MF, Xue X, Wang D, Lu Y, Wu ZH, Zou HZ (2013b) High performance filtration nanofibrous membranes based on hydrophilic poly(vinyl alcohol-co-ethylene) copolymer. Desalination 329:50–56CrossRefGoogle Scholar
  15. Li F, Meng JQ, Ye JF, Yang B, Tian Q, Deng CH (2014) Surface modification of PES ultrafiltration membrane by polydopamine coating and poly(ethylene glycol) grafting: morphology, stability, and anti-fouling. Desalination 344:422–430CrossRefGoogle Scholar
  16. Li R, Wang S, Lu A, Zhang LN (2015) Dissolution of cellulose from different sources in an NaOH/urea aqueous system at low temperature. Cellulose 22:339–349CrossRefGoogle Scholar
  17. Liu SL, Zeng J, Tao DD, Zhang LN (2010) Microfiltration performance of regenerated cellulose membrane prepared at low temperature for wastewater treatment. Cellulose 17:1159–1169CrossRefGoogle Scholar
  18. Liu PS, Chen Q, Li L, Lin SC, Shen J (2014) Anti-biofouling ability and cytocompatibility of the zwitterionic brushes-modified cellulose membrane. J Mater Chem B 2:7222–7231CrossRefGoogle Scholar
  19. Ma Z, Ramakrishna S (2008) Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification. J Membr Sci 319:23–28CrossRefGoogle Scholar
  20. Ma HY, Burger C, Hsiao BS, Chu B (2011) Ultra-fine cellulose nanofibers: new nano-scale materials for water purification. J Mater Chem 21:7507–7510CrossRefGoogle Scholar
  21. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  22. Qiu JH, Zhang YW, Shen YB, Zhang YT, Zhang HQ, Liu JD (2010) Hydrophilic modification of microporous polysulfone membrane via surface-initiated atom transfer radical polymerization of acrylamide. Appl Surf Sci 256:3274–3280CrossRefGoogle Scholar
  23. Tian JY, Ernst M, Cui FY, Jekel M (2013a) Effect of particle size and concentration on the synergistic UF membrane fouling by particles and NOM fractions. J Membr Sci 446:1–9CrossRefGoogle Scholar
  24. Tian M, Qiu CQ, Liao Y, Chou SR, Wang R (2013b) Preparation of polyamide thin film composite forward osmosis membranes using electrospun polyvinylidene fluoride (PVDF) nanofibers as substrates. Sep Purif Technol 118:727–736CrossRefGoogle Scholar
  25. Vanherck K, Vandezande P, Aldea SO, Vankelecom IFJ (2008) Cross-linked polyimide membranes for solvent resistant nanofiltration in aprotic solvents. J Membr Sci 320:468–476CrossRefGoogle Scholar
  26. Vatanpour V, Madaeni SS, Moradian R, Zinadini S, Astinchap B (2012) Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Sep Purif Technol 90:69–82CrossRefGoogle Scholar
  27. Wang D, Sun G, Chiou BS (2007) A high-throughput, controllable, and environmentally benign fabrication process of thermoplastic nanofibers. Macromol Mater Eng 292:407–414CrossRefGoogle Scholar
  28. Wang D, Liu N, Xu WL, Sun G (2011a) Layer-by-layer structured nanofiber membranes with photoinduced self-cleaning functions. J Phys Chem C 115:6825–6832CrossRefGoogle Scholar
  29. Wang D, Xu WL, Sun G, Chiou BS (2011b) Radical graft polymerization of an allyl monomer onto hydrophilic polymers and their antibacterial nanofibrous membranes. ACS Appl Mater Interfaces 3:2838–2844CrossRefGoogle Scholar
  30. Wang D, Wang K, Xu WL (2013) Novel fabrication of magnetic thermoplastic nanofibers via melt extrusion of immiscible blends. Polym Adv Technol 24:70–74CrossRefGoogle Scholar
  31. Wang X, Fang DF, Hsiao BS, Chu B (2014a) Nanofiltration membranes based on thin-film nanofibrous composites. J Membr Sci 469:188–197CrossRefGoogle Scholar
  32. Wang Z, Ma HY, Hsiao BS, Chu B (2014b) Nanofibrous ultrafiltration membranes containing cross-linked poly(ethylene glycol) and cellulose nanofiber composite barrier layer. Polymer 55:366–372CrossRefGoogle Scholar
  33. Wei XZ, Li GS, Nie JJ, Xiang H, Chen JY (2014) Preparation and improvement anti-fouling property and biocompatibility of polyethersulfone membrane by blending comb-like amphiphilic copolymer. J Porous Mater 21:589–599CrossRefGoogle Scholar
  34. Wu HQ, Tang BB, Wu PY (2013) Preparation and characterization of anti-fouling β-cyclodextrin/ polyester thin film nanofiltration composite membrane. J Membr Sci 428:301–308CrossRefGoogle Scholar
  35. Xiong B, Zhao PP, Hu K, Zhang LN, Cheng GZ (2014) Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose 21:1183–1192CrossRefGoogle Scholar
  36. Yin J, Deng BL (2015) Polymer-matrix nanocomposite membranes for water treatment. J Membr Sci 479:256–275CrossRefGoogle Scholar
  37. Zhao XT, Su YL, Chen WJ, Peng JM, Jiang ZY (2012) Grafting perfluoroalkyl groups onto polyacrylonitrile membrane surface for improved fouling release property. J Membr Sci 415–416:824–834CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Mufang Li
    • 1
  • Zhihong Wu
    • 1
  • Mengying Luo
    • 1
  • Wenwen Wang
    • 1
  • Kangqi Chang
    • 1
  • Ke Liu
    • 1
  • Qiongzhen Liu
    • 1
  • Ming Xia
    • 1
  • Dong Wang
    • 1
  1. 1.College of Materials Science and EngineeringWuhan Textile UniversityWuhanChina

Personalised recommendations