Advertisement

Cellulose

, Volume 22, Issue 4, pp 2825–2835 | Cite as

Synergistic effects occurring between water glasses and urea/ammonium dihydrogen phosphate pair for enhancing the flame retardancy of cotton

  • Ana Maria Grancaric
  • Lea Botteri
  • Jenny Alongi
  • Giulio Malucelli
Original Paper

Abstract

Cotton fabrics have been treated with two different finishing compositions based on urea (U) and ammonium dihydrogen phosphate (AP) in order to enhance their flame retardancy properties, particularly referring to the resistance to a flame application (namely, Limiting Oxygen Index tests) and to an irradiative heat flux of 35 kW/m2 (by cone calorimetry). The collected results have proven a remarkable increase of cotton flame resistance: indeed, the fabrics treated with the high concentrated bath showed a LOI increase of 121 % (from 19 for neat cotton, to 42 %) and did not ignite under 35 kW/m2 heat flux. Thermogravimetry coupled with pyrolysis-combustion flow calorimetry has demonstrated efficient features of the proposed flame retardant system as char-promoter for cotton. In order to reduce the amounts of U and AP employed in the selected formulations, the use of water glasses (WG) has been explored. A very low WG amount has proven to be effective in halving U and AP contents, maintaining the same fire performances already provided by the high concentrated finishing bath. Furthermore, WG have turned out to act as synergistic species as demonstrated by evaluating the synergistic effectiveness parameter.

Keywords

Cotton Flame retardancy Combustion LOI Water glasses Synergistic effectiveness parameter 

Notes

Acknowledgments

The authors would like to thank European COST Action Sustainable flame retardancy for textiles and related materials based on nanoparticles substituting conventional chemicals—FLARETEX MP1105, for having supported a short term scientific mission of one of the co-authors (L.B.). Mr. Fabio Cuttica and Mrs. Giusy Iacono are also acknowledged for performing the cone calorimetry tests and SEM measurements, respectively.

References

  1. Alongi J, Malucelli G (2015) Cotton flame retardancy: state of the art and future perspectives. RSC Adv 5:24239–24263. doi: 10.1039/C5RA01176K CrossRefGoogle Scholar
  2. Alongi J, Camino G, Malucelli G (2013a) Heating rate effect on char yield from cotton, poly(ethylene terephthalate) and blend fabrics. Carbohydr Polym 92:1327–1334. doi: 10.1016/j.carbpol.2012.10.029 CrossRefGoogle Scholar
  3. Alongi J, Carosio F, Horrocks AR, Malucelli G (2013b) Update on flame retardant textiles: state of the art, environmental issues and innovative solutions. Smithers RAPRA Publishing, ShrewsburyGoogle Scholar
  4. Alongi J, Colleoni C, Rosace G, Malucelli G (2013c) Phosphorus- and nitrogen-doped silica coatings for enhancing the flame retardancy of cotton: Synergisms or additive effects? Polym Degrad Stab 98:579–589. doi: 10.1016/j.polymdegradstab.2012.11.017 CrossRefGoogle Scholar
  5. Alongi J, Colleoni C, Rosace G, Malucelli G (2014a) Sol–gel derived architectures for enhancing cotton flame retardancy: effect of pure and phosphorus-doped silica phases. Polym Degrad Stab 99:92–98. doi: 10.1016/j.polymdegradstab.2013.11.020 CrossRefGoogle Scholar
  6. Alongi J, Milnes J, Malucelli G, Bourbigot S, Kandola B (2014b) Thermal degradation of DNA-treated cotton fabrics under different heating conditions. J Anal Appl Pyrolysis 108:212–221. doi: 10.1016/j.jaap.2014.04.014 CrossRefGoogle Scholar
  7. Bai Z, Jiang S, Tang G, Hu Y, Song L, Yuen RKK (2014) Enhanced thermal properties and flame retardancy of unsaturated polyester-based hybrid materials containing phosphorus and silicon. Polym Adv Technol 25:223–232. doi: 10.1002/pat.3227 CrossRefGoogle Scholar
  8. Bakos D, Kosik M, Antos K, Karolyova M, Vyskocil M (1982) The role of nitrogen and nitrogen–phosphorus synergism. Fire Mater 6:10–12. doi: 10.1002/fam.810060104 CrossRefGoogle Scholar
  9. Brancatelli G, Colleoni C, Massafra MR, Rosace G (2011) Effect of hybrid phosphorus-doped silica thin films produced by sol–gel method on the thermal behaviour of cotton fabrics. Polym Degrad Stab 96:483–490. doi: 10.1016/j.polymdegradstab.2011.01.013 CrossRefGoogle Scholar
  10. Chang SH, Slopek RP, Condon B, Grunlan JC (2014) Surface coating for flame-retardant behavior of cotton fabric using a continuous layer-by-layer process. Ind Eng Chem Res 53:3805–3812. doi: 10.1021/ie403992x CrossRefGoogle Scholar
  11. Davies PJ, Horrocks AR, Alderson A (2005) The sensitisation of thermal decomposition of ammonium polyphosphate by selected metal ions and their potential for improved cotton fabric flame retardancy. Polym Degrad Stab 88:114–122. doi: 10.1016/j.polymdegradstab.2004.01.029 CrossRefGoogle Scholar
  12. Gaan S, Sun G (2007) Effect of phosphorus flame retardants on thermo-oxidative decomposition of cotton. Polym Degrad Stab 92:968–974. doi: 10.1016/j.polymdegradstab.2007.03.009 CrossRefGoogle Scholar
  13. Gaan S, Sun G, Hutches K, Engelhard MH (2008) Effect of nitrogen additives on flame retardant action of tributylphosphate: phosphorus–nitrogen synergism. Polym Degrad Stab 93:99–108. doi: 10.1016/j.polymdegradstab.2007.10.013 CrossRefGoogle Scholar
  14. Gaan S, Rupper P, Salimova V, Heuberger M, Rabe S, Vogel F (2009) Thermal decomposition and burning behavior of cellulose treated with ethyl ester phosphoramidates: effect of alkyl substituent on nitrogen atom. Polym Degrad Stab 94:1125–1134. doi: 10.1016/j.polymdegradstab.2009.03.017 CrossRefGoogle Scholar
  15. Gashti MP, Almasian A (2013) UV radiation induced flame retardant cellulose fiber by using polyvinylphosphonic acid/carbon nanotube composite coating. Compos B Eng 45:282–289. doi: 10.1016/j.compositesb.2012.07.052 CrossRefGoogle Scholar
  16. Gashti MP, Rashidian R, Zohouri AB, Almasian A (2013) A novel method for colouration of cotton using clay nano-adsorbent treatment. Pigm Resin Technol 42:175–185. doi: 10.1108/03699421311317343 CrossRefGoogle Scholar
  17. Gordon S, Hsie YL (2007) Cotton: science and technology. Woodhead Publishing Limited and CRC Press, Boca Raton (FL)CrossRefGoogle Scholar
  18. Hendrix JE, Bostic JE, Olson ES, Barker RH (1970) Pyrolysis and combustion of cellulose I. Effects of thiphenyl phosphate in the presence of nitrogenous bases. J Appl Polym Sci 14:1701–1723. doi: 10.1002/app.1970.070140705 CrossRefGoogle Scholar
  19. Hendrix JE, Drake GL, Barker RH (1972a) Pyrolysis and combustion of cellulose III. Mechanistic basis for the synergism involving organic phosphates and nitrogenous bases. J Appl Polym Sci 16:257–274. doi: 10.1002/app.1972.070160201 CrossRefGoogle Scholar
  20. Hendrix JE, Drake GL, Barker RH (1972b) Pyrolysis and combustion of cellulose II. Thermal analysis of mixture of methyl alpha-d-glucopyranoside and levoglucosan with model phosphate flame retardants. J Appl Polym Sci 16:41–59. doi: 10.1002/app.1972.070160105 CrossRefGoogle Scholar
  21. Horrocks AR (1983) An introduction to the burning behaviour of cellulosic fibres. J Soc Dyers Colour 99:191–197. doi: 10.1111/j.1478-4408.1983.tb03686.x CrossRefGoogle Scholar
  22. Horrocks AR (2011) Flame retardant challenges for textiles and fibres: new chemistry versus innovatory solutions. Polym Degrad Stab 96:377–392. doi: 10.1016/j.polymdegradstab.2010.03.036 CrossRefGoogle Scholar
  23. Horrocks AR (2014) Textile flammability research since 1980. Personal challenges and partial solutions. Polym Degrad Stab 98:2813–2824. doi: 10.1016/j.polymdegradstab.2013.10.004 CrossRefGoogle Scholar
  24. Horrocks AR, Smart G, Nazaré S, Kandola B, Price D (2010) Quantification of zinc hydroxystannate and stannate synergies in halogen-containing flame-retardant polymeric formulations. J Fire Sci 28:217–248. doi: 10.1177/0734904109344302 CrossRefGoogle Scholar
  25. Kandola BJ, Horrocks RA, Price D, Coleman GV (1996) Flame retardant treatments of cellulose and their influence on the mechanism of cellulose pyrolysis. J Macromol Sci Rev Macromol Chem Phys C36:721–794. doi: 10.1080/15321799608014859 CrossRefGoogle Scholar
  26. Lewin M (2001) Synergism and catalysis in flame retardancy of polymers. Polym Adv Technol 12:215–222. doi: 10.1002/pat.132 CrossRefGoogle Scholar
  27. Lyon RE, Walters RN (2004) Pyrolysis combustion flow calorimetry. J Anal Appl Pyrolysis 71:27–46. doi: 10.1016/S0165-2370(03)00096-2 CrossRefGoogle Scholar
  28. Malucelli G, Carosio F, Alongi J, Fina A, Frache A, Camino G (2014) Materials engineering for surface-confined flame retardancy. Mater Sci Eng R 84:1–20. doi: 10.1016/j.mser.2014.08.001 CrossRefGoogle Scholar
  29. Mohamed AL, El-Sheikh MA, Waly AI (2014) Enhancement of flame retardancy and water repellency properties of cotton fabrics using silanol based nano composites. Carbohydr Polym 102:727–737. doi: 10.1016/j.carbpol.2013.10.097 CrossRefGoogle Scholar
  30. Nam S, Condon BD, Parikh DV, Zhao Q, Cintrón MS, Madison C (2011) Effect of urea additive on the thermal decomposition of greige cotton nonwoven fabric treated with diammonium phosphate. Polym Degrad Stab 96:2010–2018. doi: 10.1016/j.polymdegradstab.2011.08.014 CrossRefGoogle Scholar
  31. Price D, Horrocks RA, Akalin M, Faroq AA (1997) Influence of flame retardants on the mechanism of pyrolysis of cotton (cellulose) fabrics in air. J Anal Appl Pyrolysis 40–41:511–524. doi: 10.1016/S0165-2370(97)00043-0 CrossRefGoogle Scholar
  32. Simoncic B, Hadžić S, Vasiljević J, Černe L, Tomšič B, Jerman I, Orel B, Medved J (2014) Tailoring of multifunctional cellulose fibres with “lotus effect” and flame retardant properties. Cellulose 21:595–605. doi: 10.1007/s10570-013-0103-4 CrossRefGoogle Scholar
  33. Tata J, Alongi J, Carosio F, Frache A (2011) Optimization of the procedure to burn textile fabrics by cone calorimeter: part I. Combustion behavior of polyester. Fire Mater 35:397–409. doi: 10.1002/fam.1061 CrossRefGoogle Scholar
  34. Weil E, Hirschler M, Patel N, Said M, Shakir S (1992) Oxygen index: correlations to other fire tests. Fire Mater 16:159–167. doi: 10.1002/fam.810160402 CrossRefGoogle Scholar
  35. Yang CQ, Hu Y (2011) Applications of micro-scale combustion calorimetry to the studies of cotton and nylon fabrics treated with organophosphorus flame retardants. J Anal Appl Pyrolysis 91:125–133. doi: 10.1016/j.jaap.2011.01.012 CrossRefGoogle Scholar
  36. Yang CQ, He Q, Lyon RE, Hu Y (2010) Investigation of the flammability of different textile fabrics using micro-scale combustion calorimetry. Polym Degrad Stab 95:108–115. doi: 10.1016/j.polymdegradstab.2009.11.047 CrossRefGoogle Scholar
  37. Zhu P, Sui S, Wang B, Sun K, Sun G (2004) A study of pyrolysis and pyrolysis products of flame-retardant cotton fabrics by DSC, TGA, and PY–GC–MS. J Anal Appl Pyrolysis 71:645–655. doi: 10.1016/j.jaap.2003.09.005 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Ana Maria Grancaric
    • 1
  • Lea Botteri
    • 1
  • Jenny Alongi
    • 2
  • Giulio Malucelli
    • 2
  1. 1.Faculty of Textile TechnologyUniversity of ZagrebZagrebCroatia
  2. 2.Department of Applied Science and TechnologyPolitecnico di TorinoAlessandriaItaly

Personalised recommendations