Skip to main content
Log in

Insight into glass transition of cellulose based on direct thermal processing after plasticization by ionic liquid

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Ionic liquid plasticized cellulose (IPC) materials were prepared with microcrystalline cellulose (MCC) and 25–70 wt% 1-butyl-3-methylimidazolium chloride (BmimCl) by direct thermal processing. Their chemical, morphological and crystalline structures were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction, and their glass transition behaviors and mechanical properties were discussed. The results show there is no chemical reaction between cellulose and the ionic liquid. BmimCl only acts as a plasticizer to improve the thermal processability of MCC, the IPC materials show only one glass transition terrace and can be processed repeatedly. Based on the free volume transition and the percolation of continuous hydrogen bonding networks, the effects of free volume and H-bonding interactions on the glass transition have been differentiated. Furthermore, the phase diagram with four regions has been plotted for IPC materials, which is useful to optimize the thermal processing and modulate the properties of cellulose materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

MCC:

Microcrystalline cellulose

T g :

Glass transition temperature

IPC:

Ionic liquid plasticized cellulose

FT-IR:

Fourier transform infrared spectroscopy

DSC:

Differential scanning calorimetry

XRD:

X-ray diffraction

SEM:

Scanning electron microscopy

G-T/K-B equation:

Gordon-Taylor/Kelley-Bueche equation

References

  • Bizot H, LeBail P, Leroux B, Davy J, Roger P, Buleon A (1997) Calorimetric evaluation of the glass transition in hydrated, linear and branched polyanhydroglucose compounds. Carbohydr Polym 32:33–50

    Article  CAS  Google Scholar 

  • Brovchenko I, Andrews MN, Oleinikova A (2011) Thermal stability of the hydrogen-bonded water network in the hydration shell of islet amyloid polypeptide. J Phys Condens Matter 23:155105

    Article  CAS  Google Scholar 

  • Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548

    Article  CAS  Google Scholar 

  • Calahorra ME, Cortázar M, Eguiazábal JI, Guzmán GM (1989) Thermogravimetric analysis of cellulose: effect of the molecular weight on thermal decomposition. J Appl Polym Sci 37:3305–3314

    Article  CAS  Google Scholar 

  • Chen W, Lickfield GC, Yang CQ (2004) Molecular modeling of cellulose in amorphous state. Part I: model building and plastic deformation study. Polymer 45:1063–1071

    Article  CAS  Google Scholar 

  • Choi SY, Rodriguez H, Mirjafari A, Gilpin DF, McGrath S, Malcolm KR, Tunney MM, Rogers RD, McNally T (2011) Dual functional ionic liquids as plasticisers and antimicrobial agents for medical polymers. Green Chem 13:1527–1535

    Article  CAS  Google Scholar 

  • Choi SY, Rodriguez H, Gunaratne HQN, Puga AV, Gilpin D, McGrath S, Vyle JS, Tunney MM, Rogers RD, McNally T (2014) Dual functional ionic liquids as antimicrobials and plasticisers for medical grade PVCs. RSC Adv 4:8567–8581

    Article  CAS  Google Scholar 

  • Diddens I, Murphy B, Krisch M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41:9755–9759

    Article  CAS  Google Scholar 

  • Duchemin BJC, Newman RH, Staiger MP (2009) Structure–property relationship of all-cellulose composites. Compos Sci Technol 69:1225–1230

    Article  CAS  Google Scholar 

  • Dupont A-L (2003) Cellulose in lithium chloride/N, N-dimethylacetamide, optimisation of a dissolution method using paper substrates and stability of the solutions. Polymer 44:4117–4126

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580

    Article  Google Scholar 

  • Gericke M, Trygg J, Fardim P (2013) Functional cellulose beads: preparation, characterization, and applications. Chem Rev 113:4812–4836

    Article  CAS  Google Scholar 

  • Gordon M, Taylor JS (1952) Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers. J Appl Chem 2:493–500

    Article  CAS  Google Scholar 

  • Han D, Yan L (2010) Preparation of all-cellulose composite by selective dissolving of cellulose surface in PEG/NaOH aqueous solution. Carbohydr Polym 79:614–619

    Article  CAS  Google Scholar 

  • Hancock B, Zografi G (1994) The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm Res 11:471–477

    Article  CAS  Google Scholar 

  • Huber T, Müssig J, Curnow O, Pang S, Bickerton S, Staiger MP (2011) A critical review of all-cellulose composites. J Mater Sci 47:1171–1186

    Article  Google Scholar 

  • Jacobsen S, Fritz HG (1999) Plasticizing polylactide—the effect of different plasticizers on the mechanical properties. Polym Eng Sci 39:1303–1310

    Article  CAS  Google Scholar 

  • Johnson DL (1969) Compounds dissolved in cyclic amine oxides. US Patent 3,447,939

  • Kim J-W, Park S, Harper DP, Rials TG (2013) Structure and thermomechanical properties of stretched cellulose films. J Appl Polym Sci 128:181–187

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81

    Article  CAS  Google Scholar 

  • Mamleev V, Bourbigot S, Yvon J (2007) Kinetic analysis of the thermal decomposition of cellulose: the main step of mass loss. J Anal Appl Pyrolysis 80:151–165

    Article  CAS  Google Scholar 

  • Mateyawa S, Xie DF, Truss RW, Halley PJ, Nicholson TM, Shamshina JL, Rogers RD, Boehm MW, McNally T (2013) Effect of the ionic liquid 1-ethyl-3-methylimidazolium acetate on the phase transition of starch: dissolution or gelatinization? Carbohydr Polym 94:520–530

    Article  CAS  Google Scholar 

  • Mazeau K, Heux L (2003) Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J Phys Chem B 107:2394–2403

    Article  CAS  Google Scholar 

  • Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587

    Article  CAS  Google Scholar 

  • Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci Polym Phys 33:1647–1651

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Ibeta from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Paes SS, Sun S, MacNaughtan W, Ibbett R, Ganster J, Foster TJ, Mitchell JR (2010) The glass transition and crystallization of ball milled cellulose. Cellulose 17:693–709

    Article  CAS  Google Scholar 

  • Pinkert A, Marsh KN, Pang SS, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728

    Article  CAS  Google Scholar 

  • Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38:1653–1689

    Article  CAS  Google Scholar 

  • Roig F, Dantras E, Dandurand J, Lacabanne C (2011) Influence of hydrogen bonds on glass transition and dielectric relaxations of cellulose. J Phys Appl Phys 44:045403

    Article  Google Scholar 

  • Samayam IP, Hanson BL, Langan P, Schall CA (2011) Ionic-liquid induced changes in cellulose structure associated with enhanced biomass hydrolysis. Biomacromolecules 12:3091–3098

    Article  CAS  Google Scholar 

  • Sankri A, Arhaliass A, Dez I, Gaumont AC, Grohens Y, Lourdin D, Pillin I, Rolland-Sabaté A, Leroy E (2010) Thermoplastic starch plasticized by an ionic liquid. Carbohydr Polym 82:256–263

    Article  CAS  Google Scholar 

  • Schneider HA (1989) Glass transition behaviour of compatible polymer blends. Polymer 30:771–779

    Article  CAS  Google Scholar 

  • Schroeter J, Felix F (2005) Melting cellulose. Cellulose 12:159–165

    Article  CAS  Google Scholar 

  • Scott MP, Brazel CS, Benton MG, Mays JW, Holbrey JD, Rogers RD (2002) Application of ionic liquids as plasticizers for poly(methyl methacrylate). Chem Commun 1370–1371

  • Shi X, Zhang L, Cai J, Cheng G, Zhang H, Li J, Wang X (2011) A facile construction of supramolecular complex from polyaniline and cellulose in aqueous system. Macromolecules 44:4565–4568

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  • Szcześniak L, Rachocki A, Tritt-Goc J (2008) Glass transition temperature and thermal decomposition of cellulose powder. Cellulose 15:445–451

    Article  Google Scholar 

  • Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519–1537

    Article  CAS  Google Scholar 

  • Wang QY, Cai J, Zhang LN, Xu M, Cheng H, Han CC, Kuga S, Xiao J, Xiao R (2013) A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure. J Mater Chem A 1:6678–6686

    Article  CAS  Google Scholar 

  • Yamamuro O, Minamimoto Y, Inamura Y, Hayashi S, Hamaguchi H-O (2006) Heat capacity and glass transition of an ionic liquid 1-butyl-3-methylimidazolium chloride. Chem Phys Lett 423:371–375

    Article  CAS  Google Scholar 

  • Zhang XQ, Wu XL, Gao DC, Xia KN (2012) Bulk cellulose plastic materials from processing cellulose powder using back pressure-equal channel angular pressing. Carbohydr Polym 87:2470–2476

    Article  CAS  Google Scholar 

  • Zografi G, Kontny MJ, Yang AYS, Brenner GS (1984) Surface area and water vapor sorption of macrocrystalline cellulose. Int J Pharm 18:99–116

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the National Basic Research Program of China (973 Program, 2012CB025903), the National Natural Science Foundation of China (51210004, 51373060) and the Chinese Ministry of Education (NCET-11-0174). We also thank the Analytical and Testing Center of HUST for SEM and XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonggui Liao or Xiaolin Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Bai, J., Xue, Z. et al. Insight into glass transition of cellulose based on direct thermal processing after plasticization by ionic liquid. Cellulose 22, 89–99 (2015). https://doi.org/10.1007/s10570-014-0502-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0502-1

Keywords

Navigation