, Volume 21, Issue 6, pp 4081–4091 | Cite as

The role of cations in homogeneous succinoylation of mulberry wood cellulose in salt-containing solvents under mild conditions

  • Jianqiang Chen
  • Meng Su
  • Xiaolin Zhang
  • Rongping Chen
  • Jianguo Hong
  • Lingyun Yang
  • Zhen Yang
Original Paper


The role of two cations [tetraethylammonium+ (TEA+) and tetrabutylammonium+ (TBA+)] in the homogeneous succinoylation of mulberry wood (MW) cellulose in dimethyl sulfoxide (DMSO)/tetraethylammonium chloride (TEACl) and DMSO/tetrabutylammonium fluoride (TBAF) was investigated using the intrinsic viscosity and two-dimensional nuclear Overhauser effect NMR spectroscopy (2D NOESY). The intrinsic viscosity of MW cellulose solution strongly depends on the salt dosage for both TEACl and TBAF, indicating that the increase in the hydrodynamic size of cellulose chains was caused by the interactions between salts and cellulose, which promotes the solvation process of cellulose in solution. Two-dimensional NOESY spectra reveal that cations bind to cellobiose in DMSO by the interactions between α-methylene groups of TEA+ (or TBA+) and C1/C1′ groups of cellobiose, and the intensities of the respective crosspeaks increase with increasing TEACl dosage from 5 to 10 mg/ml, but no change was present with TBAF at the same concentration range. Taking cellobiose as a model compound for cellulose, it can be expected that TEA+ (or TBA+) and cellulose form polyelectrolyte-like complexes. The degree of substitution (DS) of homogeneous succinoylation of MW cellulose benefits from the interactions between TEA+ (or TBA+) and cellulose evidenced by FT-IR spectra and CP/MAS 13C NMR spectra. The DS of the succinylated cellulose declines at TBAF concentrations higher than 11 wt% probably because of the steric hindrance effects of TBA+.


DMSO/TEACl DMSO/TBAF Mulberry wood cellulose Homogeneous succinoylation Two-dimensional NOESY Intrinsic viscosity 



Mulberry wood


Dimethyl sulfoxide


Tetraethylammonium chloride




Tetrabutylammonium fluoride




Two-dimensional nuclear Overhauser effect NMR spectroscopy


Degree of substitution


Ionic liquids



This work was financially supported by the Special Fund for Forestry Scientific Research in Public Interest (201204803), Specialized Research Fund for the Doctoral Program of Higher Education (20133204120008), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Research Fund for the Doctoral Program of Higher Education of China (2013320412000), and the Program for Excellent Talents in Nanjing Forestry University (163030672).


  1. Ass BAP, Frollini E, Heinze T (2004) Studies on the homogeneous acetylation of cellulose in the novel solvent dimethyl sulfoxide/tetrabutylammonium fluoride trihydrate. Macromol Biosci 4:1008–1013. doi: 10.1002/mabi.200400088 CrossRefGoogle Scholar
  2. Brendler E, Fischer S, Leipner H (2001) 7Li NMR as probe for solvent–cellulose interactions in cellulose dissolution. Cellulose 8(4):283–288. doi: 10.1023/A:1015120107514 CrossRefGoogle Scholar
  3. Cavanagh J, Fairbrother WJ, Palmer AG, Rance M, Skelton NJ (2007) Protein NMR spectroscopy: principles and practice. Academic Press, AmsterdamGoogle Scholar
  4. Chang ST, Chang HT (2001) Comparisons of the photostability of esterified wood. Polym Degrad Stab 71(2):261–266. doi: 10.1016/S0141-3910(00)00171-3 CrossRefGoogle Scholar
  5. Chen JQ, Gong XL, Yang H, Yao YF, Xu M, Chen Q, Cheng RS (2011a) NMR study on the effects of sodium n-dodecyl sulfate on the coil-to-globule transition of poly(N-isopropylacrylamide) in aqueous solutions. Macromolecules 44:6227–6231. doi: 10.1021/ma201269u CrossRefGoogle Scholar
  6. Chen JQ, Shao YF, Yang Z, Yang H, Cheng RS (2011b) Analysis of viscosity abnormalities of polyelectrolytes in dilute solutions. Chin J Polym Sci 29(6):750–756. doi: 10.1007/s10118-011-1088-9 CrossRefGoogle Scholar
  7. Chen JQ, Xue HJ, Yao YF, Yang H, Li AM, Xu M, Chen Q, Cheng RS (2012) Effect of surfactant concentration on the complex structure of poly(N-isopropylacrylamide)/sodium n-dodecyl sulfate in aqueous solutions. Macromolecules 45:5524–5529. doi: 10.1021/ma301003r
  8. Chen JQ, Spěváček J, Hanyková L (2014) NMR methods to study effects of additives on phase separation of thermoresponsive polymer. Macromol Symp 339:24–32. doi: 10.1002/masy.201300130 CrossRefGoogle Scholar
  9. Ciacco GT, Liebert TF, Frollini E, Heinze TJ (2003) Application of the solvent dimethyl sulfoxide/tetrabutyl-ammonium fluoride trihydrate as reaction medium for the homogeneous acylation of Sisal cellulose. Cellulose 10(2):125–132. doi: 10.1023/A:1024064018664 CrossRefGoogle Scholar
  10. Dawsey TR, McCormick CL (1990) The lithium chloride/cimethylacetamide solvent for cellulose: a literature review. JMS Rev Macromol Chem Phys C30:405–440. doi: 10.1080/07366579008050914 CrossRefGoogle Scholar
  11. El Seoud OA, Koschella A, Fidale LC, Dorn S, Heinze T (2007) Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromolecules 8:2629–2647. doi: 10.1021/bm070062i CrossRefGoogle Scholar
  12. Heinze T, Dicke R, Koschella A, Kull AH, Klohr EA, Koch W (2000) Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol Chem Phys 201:627–631CrossRefGoogle Scholar
  13. Jayakumar R, Balaji R, Nanjundan S (2000) Studies on copolymers of 2-(N-phthalimido)ethyl methacrylate with methyl methacrylate. Eur Polym J 36(8):1659–1666. doi: 10.1016/S0014-3057(99)00244-X CrossRefGoogle Scholar
  14. Jeon YS, Viswanathan A, Gross RA (1999) Studies of starch esterification: reactions with alkenyl succinates in aqueous slurry systems. Starch/Stärke 51:90–93CrossRefGoogle Scholar
  15. Kilpeläinen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) Dissolution of wood in ionic liquids. J Agric Food Chem 55:9142–9148. doi: 10.1021/jf071692e CrossRefGoogle Scholar
  16. Liebert T (2010) Cellulose solvents–remarkable history, bright future. In: Liebert T, Heinze T, Edgar KJ (eds) Cellulose solvents: for analysis, shaping and chemical modification. ACS symposium series of American Chemical Society, Washington, DC, pp 1–43Google Scholar
  17. Liebert T, Heinze T (1998) Cellulose derivatives; modification, characterization and nanostructures. In: Heinze TH, Glasser WG (eds) ACS symposium series 688, American Chemical Society, Washington, DC, pp 6Google Scholar
  18. Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81. doi: 10.1016/j.molliq.2010.04.016 CrossRefGoogle Scholar
  19. Liu CF, Sun RC, Zhang AP, Ren JL, Wang XA, Qin MH, Chao ZN, Luo W (2007) Homogeneous modification of sugarcane bagasse cellulose with succinic anhydride using a ionic liquid as reaction medium. Carbohydr Res 342:919–926. doi: 10.1016/j.carres.2007.02.006 CrossRefGoogle Scholar
  20. Lu FC, Ralph J (2003) Non-degradative dissolution and acetylation of ball-milled plant cell walls: high-resolution solution-state NMR. Plant J 35(4):535–544. doi: 10.1046/j.1365-313X.2003.01817.x
  21. Maunu SL (2002) NMR studies of wood and wood products. Prog Nucl Magn Reson Spectrosc 40(2):151–174. doi: 10.1016/S0079-6565(01)00041-3 CrossRefGoogle Scholar
  22. Östlund Å, Lundberg D, Nordstierna L, Holmberg K, Nydén M (2009) Dissolution and gelation of cellulose in TBAF/DMSO solutions: the roles of fluoride ions and water. Biomacromolecules 10:2401–2407. doi: 10.1021/bm900667q CrossRefGoogle Scholar
  23. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489. doi: 10.1126/science.111473 CrossRefGoogle Scholar
  24. Stojanovic Z, Jeremic K, Jovanovic S, Lechner MD (2005) A comparison of some methods for the determination of the degree of substitution of carboxymethyl starch. Starch/Stärke 57:79–83CrossRefGoogle Scholar
  25. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975. doi: 10.1021/ja025790m CrossRefGoogle Scholar
  26. Tzeng JK, Hou SS (2008) Interactions between poly(N-vinylformamide) and sodium dodecyl sulfate as studied by fluorescence and two-dimensional NOE NMR spectroscopy. Macromolecules 41:1281–1288. doi: 10.1021/ma702296h CrossRefGoogle Scholar
  27. Wang ZG, Liu SL, Matsumoto YJ, Kuga S (2012) Cellulose gel and aerogel from LiCl/DMSO solution. Cellulose 19:393–399. doi: 10.1007/s10570-012-9651-2 CrossRefGoogle Scholar
  28. Xiong B, Zhao PP, Cai P, Zhang LN, Hu K, Cheng GZ (2013) NMR spectroscopic studies on the mechanism of cellulose dissolution in alkali solutions. Cellulose 20(2):613–621. doi: 10.1007/s10570-013-9869-7 CrossRefGoogle Scholar
  29. Yang H, Yan XH, Cheng RS (2000) Investigation of solution properties of poly(N-isopropylacrylamide) in water with its thermohistory. J Polym Sci Polym Chem 38(9):1188–1192. doi: 10.1002/(SICI)1099-0488(20000501)38 CrossRefGoogle Scholar
  30. Young TGA, Holbrey JD, Mullan CL, Norman SE, Lagunas MC, Agostino CD, Mantle MD, Gladden LF, Bowron DT, Hardacre C (2011) Neutron diffraction, NMR and molecular dynamics study of glucose dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Chem Sci 2:1594–1605. doi: 10.1039/C1SC00241D CrossRefGoogle Scholar
  31. Zhang JM, Zhang H, Wu J, Zhang J, He JS, Xiang JF (2010) NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids. Phys Chem Chem Phys 12:1941–1947. doi: 10.1039/B920446F CrossRefGoogle Scholar
  32. Zhang AP, Liu CF, Sun RC, Xie J, Chen XY (2012) Homogeneous acylation of eucalyptus wood at room temperature in dimethyl sulfoxide/N-methylimidazole. Bioresour Technol 125:328–331. doi: 10.1016/j.biortech.2012.08.131 CrossRefGoogle Scholar
  33. Zhao Y, Liu X, Wang J, Zhang S (2012) Effects of cationic structure on cellulose dissolution in ionic liquids: a molecular dynamics study. Chem Phys Chem 13:3126–3133. doi: 10.1002/cphc.201200286 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jianqiang Chen
    • 1
  • Meng Su
    • 1
  • Xiaolin Zhang
    • 1
  • Rongping Chen
    • 1
  • Jianguo Hong
    • 1
  • Lingyun Yang
    • 3
  • Zhen Yang
    • 2
  1. 1.College of biology and the environmentNanjing Forestry UniversityNanjingPeople’s Republic of China
  2. 2.School of Chemistry and Materials ScienceNanjing Normal UniversityNanjingPeople’s Republic of China
  3. 3.Physics Department and Shanghai Key Laboratory of Magnetic ResonanceEast China Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations