Advertisement

Cellulose

, Volume 21, Issue 6, pp 3927–3939 | Cite as

Tunable mixed amorphous–crystalline cellulose substrates (MACS) for dynamic degradation studies by atomic force microscopy in liquid environments

  • Thomas Ganner
  • Timothy Aschl
  • Manuel Eibinger
  • Patricia Bubner
  • Arno Meingast
  • Boril Chernev
  • Claudia Mayrhofer
  • Bernd Nidetzky
  • Harald Plank
Original Paper

Abstract

Atomic force microscopy in liquid environments (L-AFM) became a state of the art technique in the field of enzymatic cellulose degradation due to its capability of in situ investigations on enzymatic relevant scales. Current investigations are however limited to few substrates like valonia cellulose, cotton linters and processed amorphous cellulose as only these show required flatness and purity. Structurally monophasic, these substrates confine conclusions regarding enzymatic degradation of mixed amorphous–crystalline substrates as commonly found in nature. To exploit the full potential of the technique, cellulose substrates with multiphase properties, flat topology and purity are therefore absolutely required. In this study we introduce a special preparation route based on highly crystalline Avicel PH101® cellulose and the ionic liquid 1-butyl-3-methylimmidazolium chloride as dissolution reagent. As comprehensively shown by atomic force microscopy, wide angle X-ray scattering, Raman spectroscopy and electron microscopy, the developed material allows precise control of its polymorphic composition by means of cellulose types I and II embedded in an amorphous matrix. Together with the tunable composition and flat topology over large areas (>10 × 10 µm2) the material is highly suited for L-AFM studies.

Keywords

Cellulose 1-Butyl-3-methylimmidazolium chloride Avicel Atomic force microscope Enzymatic cellulose degradation Cellulase 

Abbreviations

MACS

Mixed amorphous−crystalline cellulose substrate

C1β

Cellulose Iβ

C2

Cellulose II

Avicel

Avicel PH101®

BmimCl

1-Butyl-3-methylimmidazolium chloride

UM

Ultramicrotomy

L-AFM

Atomic force microscopy in liquid environments

WAXS

Wide angle X-ray scattering

TEM

Transmission electron microscopy

SEM

Scanning electron microscopy

RS

Raman spectroscopy

RMS

Root mean square roughness

FWHM

Full width at half maximum

Notes

Acknowledgments

We thank Stefan Mitsche for helping us with WAXS analysis; Stephanie Rosker for helping us with the experiments; Angelina Orthacker, Robert Winkler and Ferdinand Hofer for discussions. Gratitude goes to the Cambridge Crystallographic Data Centre (CCDC) for the ability to use Mercury 3.3 for simulation purposes. Financial support was provided from the Austrian Science Fund FWF (Grant P 24156-B21 to B.N.).

References

  1. Agarwal U, Reiner R, Ralph S (2010) Cellulose I crystallinity determination using FT-Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733. doi: 10.1007/s10570-010-9420-z CrossRefGoogle Scholar
  2. Ahola S, Turon X, Osterberg M et al (2008) Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure. Langmuir 24:11592–11599. doi: 10.1021/la801550j CrossRefGoogle Scholar
  3. Bubner P, Dohr J, Plank H et al (2012) Cellulases dig deep: in situ observation of the mesoscopic structural dynamics of enzymatic cellulose degradation. J Biol Chem 287:2759–2765. doi: 10.1074/jbc.M111.257717 CrossRefGoogle Scholar
  4. Bubner P, Plank H, Nidetzky B (2013) Visualizing cellulase activity. Biotechnol Bioeng 110:1529–1549. doi: 10.1002/bit.24884 CrossRefGoogle Scholar
  5. Chinga-Carrasco G (2011) Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Res Lett 6:417CrossRefGoogle Scholar
  6. Eibinger M, Bubner P, Ganner T et al (2014) Surface structural dynamics of enzymatic cellulose degradation, revealed by combined kinetic and atomic force microscopy studies. FEBS J 281:275–290. doi: 10.1111/febs.12594 CrossRefGoogle Scholar
  7. Fengel D, Jakob H, Strobel C (1995) Influence of the Alkali concentration on the formation of cellulose II. Study by X-ray diffraction and FTIR spectroscopy. Holzforschung 49:505–511. doi: 10.1515/hfsg.1995.49.6.505 CrossRefGoogle Scholar
  8. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. doi: 10.1007/s10570-013-0030-4 CrossRefGoogle Scholar
  9. Ganner T, Bubner P, Eibinger M et al (2012) Dissecting and reconstructing synergism: in situ visualization of cooperativity among cellulases. J Biol Chem 287:43215–43222. doi: 10.1074/jbc.M112.419952 CrossRefGoogle Scholar
  10. Himmel ME, Ding S-Y, Johnson DK et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. doi: 10.1126/science.1137016 CrossRefGoogle Scholar
  11. Igarashi K, Uchihashi T, Koivula A et al (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333:1279–1282. doi: 10.1126/science.1208386 CrossRefGoogle Scholar
  12. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44:3358–3393. doi: 10.1002/anie.200460587 CrossRefGoogle Scholar
  13. Kocherbitov V, Ulvenlund S, Kober M et al (2008) Hydration of microcrystalline cellulose and milled cellulose studied by sorption calorimetry. J Phys Chem B 112:3728–3734. doi: 10.1021/jp711554c CrossRefGoogle Scholar
  14. Korayem MH, Ebrahimi N (2011) Nonlinear dynamics of tapping-mode atomic force microscopy in liquid. J Appl Phys 109:084301. doi: 10.1063/1.3573390 CrossRefGoogle Scholar
  15. Kroon-Batenburg LMJ, Bouma B, Kroon J (1996) Stability of cellulose structures studied by MD simulations. Could mercerized cellulose II be parallel ? Biomacromolecules 9297:5695–5699CrossRefGoogle Scholar
  16. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577. doi: 10.1128/MMBR.66.3.506-577.2002 CrossRefGoogle Scholar
  17. Mäki-Arvela P, Anugwom I, Virtanen P et al (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crops Prod 32:175–201. doi: 10.1016/j.indcrop.2010.04.005 CrossRefGoogle Scholar
  18. Mittal A, Katahira R, Himmel M, Johnson D (2011) Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 4:41CrossRefGoogle Scholar
  19. Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi: 10.1039/c0cs00108b CrossRefGoogle Scholar
  20. Nidetzky B, Steiner W, Hayn M, Claeyssens M (1994) Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem J 298:705–710Google Scholar
  21. Park S, Baker J, Himmel M et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10CrossRefGoogle Scholar
  22. Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845. doi: 10.1038/nature07190 CrossRefGoogle Scholar
  23. Schenzel K, Fischer S (2001) NIR FT Raman spectroscopy—a rapid analytical tool for detecting the transformation of cellulose polymorphs. Cellulose 8:49–57. doi: 10.1023/A:1016616920539 CrossRefGoogle Scholar
  24. Schenzel K, Fischer S, Brendler E (2005) New method for determining the degree of cellulose i crystallinity by means of FT Raman spectroscopy. Cellulose 12:223–231. doi: 10.1007/s10570-004-3885-6 CrossRefGoogle Scholar
  25. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975. doi: 10.1021/ja025790m CrossRefGoogle Scholar
  26. Tilman D, Socolow R, Foley JA et al (2009) Beneficial biofuels—the food, energy, and environment trilemma. Science 325:270–271. doi: 10.1126/science.1177970
  27. Vitz J, Erdmenger T, Haensch C, Schubert US (2009) Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem 11:417–424. doi: 10.1039/B818061J CrossRefGoogle Scholar
  28. Wang L, Zhang Y, Gao P et al (2006) Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotechnol Bioeng 93:443–456. doi: 10.1002/bit.20730 CrossRefGoogle Scholar
  29. Wiley H, Atalla RH (1987) Band Assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129CrossRefGoogle Scholar
  30. Zavrel M, Bross D, Funke M et al (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100:2580–2587. doi: 10.1016/j.biortech.2008.11.052 CrossRefGoogle Scholar
  31. Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277. doi: 10.1021/ma0505676 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Thomas Ganner
    • 1
  • Timothy Aschl
    • 1
  • Manuel Eibinger
    • 2
  • Patricia Bubner
    • 2
  • Arno Meingast
    • 3
  • Boril Chernev
    • 3
  • Claudia Mayrhofer
    • 3
  • Bernd Nidetzky
    • 2
    • 4
  • Harald Plank
    • 1
    • 3
  1. 1.Institute for Electron Microscopy and NanoanalysisGraz University of TechnologyGrazAustria
  2. 2.Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyGrazAustria
  3. 3.Graz Centre for Electron MicroscopyGrazAustria
  4. 4.Austrian Centre of Industrial BiotechnologyGrazAustria

Personalised recommendations