Skip to main content

Advertisement

Log in

Dry jet-wet spinning of strong cellulose filaments from ionic liquid solution

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

An Erratum to this article was published on 28 April 2017

Abstract

Considerable growth is expected in the production of man-made cellulose textile fibers, which are commercially produced either via derivatization to form cellulose xanthate (viscose) or via direct dissolution in N-methylmorpholine N-oxide (Lyocell). In the study at hand, cellulosic fibers are spun from a solution in the ionic liquid [DBNH] [OAc] into water, resulting in properties equal or better than Lyocell (tensile strength 37 cN tex−1 or 550 MPa). Spinning stability is explored, and the effects of extrusion velocity, draw ratio, spinneret aspect ratio and bath temperature on mechanical properties and orientation are discussed. With the given set-up, tenacities and moduli are improved with higher draw ratios, while elongation at break, the ratio of wet to dry strength, modulus of resilience and birefringence depend little on draw ratio or extrusion velocity, elastic limit not at all. We find the process robust and simple, with stretching to a draw ratio of 5 effecting most improvement, explained by the orientation of amorphous domains along the fiber axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adusumali R-B, Reifferscheid M, Weber H, Roeder T, Sixta H, Gindl W (2006) Mechanical properties of regenerated cellulose fibres for composites. Macromol Symp 244(1):119–125. doi:10.1002/masy.200651211

    Article  Google Scholar 

  • ASTM (2010) Standard test method for tensile properties of yarns by the single-strand method. D2256/D2256M. ASTM International, West Conshohocken, PA, United States

  • Bernot RJ, Brueseke MA, Evans-White MA, Lamberti GA (2005) Acute and chronic toxicity of imidazolium-based ionic liquids on Daphnia magna. Environ Toxicol Chem 24(1):87–92. doi:10.1897/03-635.1

    Article  CAS  Google Scholar 

  • BISFA (2004) Testing methods viscose, modal, lyocell and acetate staple fibres and tows. BISFA—The International Bureau for the Standardisation of Man-Made Fibres, Brussels

    Google Scholar 

  • Coulsey HA, Smith SB (1996) The formation and structure of a new cellulosic fibre. Lenzinger Ber 75:51–61

    Google Scholar 

  • Cross MM (1965) Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J Colloid Sci 20(5):417–437. doi:10.1016/0095-8522(65)90022-X

    Article  CAS  Google Scholar 

  • Doherty TV, Mora-Pale M, Foley SE, Linhardt RJ, Dordick JS (2010) Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy. Green Chem 12(11):1967. doi:10.1039/c0gc00206b

    Article  CAS  Google Scholar 

  • Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26(9):1473–1524. doi:10.1016/s0079-6700(01)00025-9

    Article  CAS  Google Scholar 

  • Gindl W, Reifferscheid M, Adusumalli RB, Weber H, Röder T, Sixta H, Schöberl T (2008a) Anisotropy of the modulus of elasticity in regenerated cellulose fibres related to molecular orientation. Polymer 49(3):792–799. doi:10.1016/j.polymer.2007.12.016

    Article  CAS  Google Scholar 

  • Gindl W, Reifferscheid M, Martinschitz KJ, Boesecke P, Keckes J (2008b) Reorientation of crystalline and noncrystalline regions in regenerated cellulose fibers and films tested in uniaxial tension. J Polym Sci B Polym Phys 46(3):297–304. doi:10.1002/polb.21367

    Article  CAS  Google Scholar 

  • Grasa GA, Kissling RM, Nolan SP (2002) N-heterocyclic carbenes as versatile nucleophilic catalysts for transesterification/acylation reactions. Org Lett 4(21):3583–3586. doi:10.1021/ol0264760

    Article  CAS  Google Scholar 

  • Gries T, Wirth B, Warnecke M, Schmenk B, Seide G (2011) Filament breaches during air-gap spinning. Chem Fibers Int 61:38–39

    Google Scholar 

  • Hämmerle FM (2011) The cellulose gap (the future of cellulose fibers). Lenzinger Ber 89:12–21

    Google Scholar 

  • Happel S (2014) Lenzing Fibers. Paper presented at the Mistra Future Fashion Symposium, Stockholm, Sweden, 27 May 2014

  • Hauru LKJ, Hummel M, King AWT, Kilpeläinen IA, Sixta H (2012a) Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromolecules 13(9):2896–2905. doi:10.1021/bm300912y

    Article  CAS  Google Scholar 

  • Hauru LKJ, Hummel M, Sixta H (2012b) Fibre spinning from ionic liquid dope. 12th European workshop on lignocellulosics and pulp, Espoo, Finland, August 27-30, 2012. University of Helsinki, Helsinki, pp 272–275

    Google Scholar 

  • Hauru LKJ, Ma Y, Hummel M, Alekhina M, King AWT, Kilpeläinen IA, Penttilä PA, Serimaa R, Sixta H (2013) Enhancement of ionic liquid-aided fractionation of birchwood. Part 1: autohydrolysis pretreatment. RSC Adv 3:16365–16373. doi:10.1039/C3RA41529E

    Article  CAS  Google Scholar 

  • Hearle JWS, Schawaller D (2000) Fibers, 2. Structure. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/14356007.a10_477.pub3

  • Hummel M, Michud A, Sixta H (2011) Extensional rheology of cellulose-ionic liquid solutions. In: Nordic Rheology Conference, Helsinki, Finland, June 8-10, 2011. Annual Transactions of the Nordic Rheology Society, vol. 19, p 313

  • Hummel M, Michud A, Tanttu M, Asaadi S, Ma Y, Hauru LKJ, Parviainen A, King AWT, Kilpeläinen I, Sixta H (2014) Ionic liquids for the production of man-made cellulosic fibers- opportunities and challenges. Adv Polym Sci (accepted)

  • Jiang G, Yuan Y, Wang B, Yin X, Mukuze K, Huang W, Zhang Y, Wang H (2012) Analysis of regenerated cellulose fibers with ionic liquids as a solvent as spinning speed is increased. Cellulose 19(4):1075–1083. doi:10.1007/s10570-012-9716-2

    Article  CAS  Google Scholar 

  • King AWT, Asikkala J, Mutikainen I, Järvi P, Kilpeläinen I (2011) Distillable acid-base conjugate ionic liquids for cellulose dissolution and processing. Angew Chem 123(28):6425–6429. doi:10.1002/ange.201100274

    Article  Google Scholar 

  • King AWT, Parviainen A, Karhunen P, Matikainen J, Hauru LKJ, Sixta H, Kilpelainen I (2012) Relative and inherent reactivities of imidazolium-based ionic liquids: the implications for lignocellulose processing applications. RSC Adv 2:8020–8026. doi:10.1039/c2ra21287k

    Article  CAS  Google Scholar 

  • Kong K, Eichhorn SJ (2005) Crystalline and amorphous deformation of process-controlled cellulose-II fibres. Polymer 46(17):6380–6390. doi:10.1016/j.polymer.2005.04.096

    Article  CAS  Google Scholar 

  • Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15(1):59–66. doi:10.1007/s10570-007-9160-x

    Article  CAS  Google Scholar 

  • Krässig HA (1993) Cellulose: structure, accessibility and reactivity. Polymer Monographs, vol 11. Gordon and Breach Science Publishers, Chemin de la Sallaz

    Google Scholar 

  • Laus G, Bentivoglio G, Schottenberger H, Kahlenberg V, Kopacka H, Röder T, Sixta H (2005) Ionic liquids: current developments, potential and drawbacks for industrial applications. Lenzinger Ber 84:71–85

    CAS  Google Scholar 

  • Lenz J, Schurz J, Wrentschur E (1994) On the elongation mechanism of regenerated cellulose fibres. Holzforschung 48(s1):3–158. doi:10.1515/hfsg.1994.48.s1.72

    Article  Google Scholar 

  • Michud A, King A, Parviainen A, Sixta H, Hauru L, Hummel M, Kilpeläinen I (2014) Process for the production of shaped cellulose articles from a solution containing pulp dissolved in distillable ionic liquids. FI Patent Application PCT/FI2014/050238, 2014-04-04

  • Mortimer SA, Péguy AA (1996a) The formation of structure in the spinning and coagulation of Lyocell fibres. Cellul Chem Technol 30:117–132

    CAS  Google Scholar 

  • Mortimer SA, Péguy AA (1996b) The influence of air-gap conditions on the structure formation of lyocell fibers. J Appl Polym Sci 60(10):1747–1756. doi:10.1002/(SICI)1097-4628(19960606)60:10<1747::AID-APP28>3.0.CO;2-#

  • Mortimer SA, Péguy AA, Ball RC (1996) Influence of the physical process parameters on the structure formation of Lyocell fibres. Cellul Chem Technol 30:251–266

    CAS  Google Scholar 

  • Northolt MG (1985) Are stronger cellulose fibres feasible? Lenzinger Ber 59:71–78

    CAS  Google Scholar 

  • Parviainen A, King AWT, Mutikainen I, Hummel M, Selg C, Hauru LKJ, Sixta H, Kilpeläinen I (2013) Predicting cellulose solvating capabilities of acid-base conjugate ionic liquids. ChemSusChem 6(11):2161–2169. doi:10.1002/cssc.201300143

    Article  CAS  Google Scholar 

  • Röder T, Moosbauer J, Kliba G, Schlader S, Zuckerstätter G, Sixta H (2009) Comparative characterisation of man-made regenerated cellulose fibers. Lenzinger Ber 87:98–105

    Google Scholar 

  • Schrems M, Ebner G, Liebner F, Becker E, Potthast A, Rosenau T (2010) Side reactions in the system cellulose/1-alkyl-3-methyl-imidazolium ionic liquid. In: Cellulose solvents: for analysis, shaping and chemical modification, vol 1033. ACS Symposium Series, vol 1033. American Chemical Society, pp 149–164. doi:10.1021/bk-2010-1033.ch008

  • Schuster KC, Aldred P, Villa M, Baron M, Loidl R, Biganska O, Patlazhan S, Navard P, Rüf H, Jericha E (2003) Characterising the emerging Lyocell fibres structures by ultra small neutron angle scattering (USANS). Lenzinger Ber 82:107–117

    Google Scholar 

  • Stibal W, Schwarz R, Kemp U, Bender K, Weger F, Stein M (2000) Fibers, 3. General production technology. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/14356007.a10_511

  • Sun N, Swatloski RP, Maxim ML, Rahman M, Harland AG, Haque A, Spear SK, Daly DT, Rogers RD (2008) Magnetite-embedded cellulose fibers prepared from ionic liquid. J Mater Chem 18(3):283–290. doi:10.1039/b713194a

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124(18):4974–4975. doi:10.1021/ja025790m

    Article  CAS  Google Scholar 

  • Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ (2006) Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 7(2):415–418. doi:10.1021/bm050837s

    Article  CAS  Google Scholar 

  • Zhang H, Wang ZG, Zhang ZN, Wu J, Zhang J, He JS (2007) Regenerated-cellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater 19(5):698–704. doi:10.1002/adma.200600442

    Article  CAS  Google Scholar 

  • Ziabicki A (1976) Fundamentals of fibre formation. Wiley, London

    Google Scholar 

  • Zikeli S, Firgo H, Eichinger D, Jurkovic R (1992) Verfahren zur Herstellung eines cellulosischen Formkorpers. European Patent Application EP 0 494 852 A2, 1992-07-15

Download references

Acknowledgments

The authors wish to thank TEKES—the Finnish Funding Agency for Technology and Innovation and Finnish Bioeconomy Cluster FIBIC Ltd. for funding in the framework of the Future Biorefinery Cellulose project. Arno Parviainen synthesized the [DBNH] [OAc] with Dr. Alistair King and Prof. Ilkka Kilpeläinen (University of Helsinki). Dope samples were kindly provided by Shirin Asaadi. Kaarlo Nieminen assisted with MatLab and GPC was operated by Lasse Tolonen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Sixta.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10570-017-1305-y.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 769 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hauru, L.K.J., Hummel, M., Michud, A. et al. Dry jet-wet spinning of strong cellulose filaments from ionic liquid solution. Cellulose 21, 4471–4481 (2014). https://doi.org/10.1007/s10570-014-0414-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0414-0

Keywords

Navigation