Advertisement

Cellulose

, Volume 21, Issue 6, pp 4455–4469 | Cite as

Bacterial cellulose films: influence of bacterial strain and drying route on film properties

  • Muling Zeng
  • Anna Laromaine
  • Anna Roig
Original Paper

Abstract

Structural properties of bacterial cellulose (BC) depend on the microstructure of the material, which in turn is influenced by the bacterial strain. This paper reports the production of BC thin films from two bacterial strains, gluconacetobacter xylinus (GX) and gluconacetobacter europaeus (GE), and three methods of drying the films; at room temperature, freeze drying and supercritical drying. The porosity, transparency, water absorption capacity (WAC) and mechanical properties of the obtained films are further investigated. We conclude that materials with different properties can be fabricated by selecting the bacterial strain or the drying method. Supercritical drying of films of GE achieved mechanically robust and extremely light films, 0.05 g/mL, with up to 96 % of porosity, and with a WAC up 110 times their dried weight. We determined that materials resulting from GE strain are not much affected by the drying method. On the other hand, GX produced BC films more sensitive to the drying method used. Films are denser, 0.6–0.2 g/mL, with tunable porosity from 60 to 90 % and their maximum WAC is 66 times their dried weight.

Keywords

Bacterial cellulose Films Transparent Bacterial strain Water adsorbent 

Notes

Acknowledgments

The research leading to these results has received funding from the People Program (Marie Curie Actions) of the European Union’s Seventh Framework Program (FP7/2007-2013) under REA grant agreement no 303630 and cofounded by the European Social Fund. Authors acknowledge the funding from Spanish Ministry of Economy MAT 2012-35324, from the Generalitat de Catalunya 2014SGR213, COST Action MP1202, Ramon y Cajal grant RYC-2010-06082 (AL), and Chinese Scholarship Council fellowship (MZ). The group of Dr. Alex Peralvarez for their help in the bacterial culture, Dr. Josep PuigMartí and the group of Prof. David Amabilino for the use of the optical microscope, Prof. Elies Molins and Toni Pons for the use and training in the use of the freeze drier and Dr. Roberto L. Guzman de Villoria for his advices in the mechanical measurements.

Supplementary material

10570_2014_408_MOESM1_ESM.docx (2.2 mb)
Supporting Information is available online or from the author. (DOCX 2241 kb)

References

  1. Andrade F, Alexandre N, Amorim I, Gartner F, Mauricio A, Luis AL, Gama M (2013) Studies on the biocompatibility of bacterial cellulose. J Bioact Compat Polym 28(1):97–112CrossRefGoogle Scholar
  2. Andrés Barrao C, Falquet L, Calderon Copete S, Descombes P, Perez R, Ortega Pérez R, Barja F (2011) Genome sequences of the high-acetic acid-resistant bacteria Gluconacetobacter europaeus LMG 18890T and G. europaeus LMG 18494 (reference strains), G. europaeus 5P3, and Gluconacetobacter oboediens 174Bp2 (isolated from vinegar). J Bacteriol 193(10):2670–2671CrossRefGoogle Scholar
  3. Cameron AR, Frith JE, Cooper-White JJ (2011) The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials 32(26):5979–5993. doi: 10.1016/j.biomaterials.2011.04.003 Google Scholar
  4. Chin SF, Romainor ANB, Pang SC (2014) Fabrication of hydrophobic and magnetic cellulose aerogel with high oil absorption capacity. Mater Lett 115:241–243. doi: 10.1016/j.matlet.2013.10.061 CrossRefGoogle Scholar
  5. Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12. doi: 10.1021/bm060620d CrossRefGoogle Scholar
  6. Das K, Ray D, Bandyopadhyay NR, Sengupta S (2010) Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, Nanoindentation, TGA and SEM. J Polym Environ 18(3):355–363CrossRefGoogle Scholar
  7. Dietrich A, Goring DAI, Revol JF (1987) Effect of mercerization on the crystallite size and crystallinity index in cellulose from different sources. Can J Chem 65(8):1724–1725CrossRefGoogle Scholar
  8. Dinand E, Vignon M, Chanzy H, Heux L (2002) Mercerization of primary wall cellulose and its implication for the conversion of cellulose I→ cellulose II. Cellulose 9(1):7–18. doi: 10.1023/a:1015877021688 CrossRefGoogle Scholar
  9. Engler A, Bacakova L, Newman C, Hategan A, Griffin M, Discher D (2004) Substrate compliance versus ligand density in cell on gel responses. Biophys J 86(1):617–628. doi: 10.1016/S0006-3495(04)74140-5 CrossRefGoogle Scholar
  10. French A (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896. doi: 10.1007/s10570-013-0030-4 CrossRefGoogle Scholar
  11. Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92(2):1432–1442. doi: 10.1016/j.carbpol.2012.10.071 CrossRefGoogle Scholar
  12. Gatenholm P, Klemm D (2010) Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull 35(03):208–213. doi: 10.1557/mrs2010.653 CrossRefGoogle Scholar
  13. Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose–NaOH aqueous solutions. Biomacromolecules 9(1):269–277. doi: 10.1021/bm700972k CrossRefGoogle Scholar
  14. George J, Ramana KV, Sabapathy SN, Jagannath JH, Bawa AS (2005) Characterization of chemically treated bacterial (Acetobacter xylinum) biopolymer: some thermo-mechanical properties. Int J Biol Macromol 37(4):189–194. doi: 10.1016/j.ijbiomac.2005.10.007 CrossRefGoogle Scholar
  15. George J, Sajeevkumar VA, Kumar R, Ramana KV, Sabapathy SN, Bawa AS (2008) Enhancement of thermal stability associated with the chemical treatment of bacterial (Gluconacetobacter xylinus) cellulose. J Appl Polym Sci 108(3):1845–1851. doi: 10.1002/app.27802 CrossRefGoogle Scholar
  16. Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352Google Scholar
  17. Hoepfner S, Ratke L, Milow B (2008) Synthesis and characterisation of nanofibrillar cellulose aerogels. Cellulose 15(1):121–129. doi: 10.1007/s10570-007-9146-8 CrossRefGoogle Scholar
  18. Hu W, Chen S, Yang J, Li Z, Wang H (2014a) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym 101:1043–1060. doi: 10.1016/j.carbpol.2013.09.102 CrossRefGoogle Scholar
  19. Hu W, Chen S, Yang J, Li Z, Wang H (2014b) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym 101:1043–1060. doi: 10.1016/j.carbpol.2013.09.102 CrossRefGoogle Scholar
  20. Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244(1):126–135. doi: 10.1002/masy.200651212 CrossRefGoogle Scholar
  21. Jin H, Kettunen M, Laiho A, Pynnonen H, Paltakari J, Marmur A, Ikkala O, Ras RHA (2011) Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir 27(5):1930–1934. doi: 10.1021/la103877r CrossRefGoogle Scholar
  22. Kalia S, Kaith BS, Kaur I (2011) Cellulose fibers: bio- and nano-polymer composites. Green chemistry and technology. Springer, Berlin. doi: 10.1007/978-3-642-17370-7 Google Scholar
  23. Kim D-Y, Nishiyama Y, Kuga S (2002) Surface acetylation of bacterial cellulose. Cellulose 9(3–4):361–367. doi: 10.1023/a:1021140726936 CrossRefGoogle Scholar
  24. Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603CrossRefGoogle Scholar
  25. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44(22):3358–3393. doi: 10.1002/anie.200460587 CrossRefGoogle Scholar
  26. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466. doi: 10.1002/anie.201001273 CrossRefGoogle Scholar
  27. Liebner F, Haimer E, Wendland M, Neouze MA, Schlufter K, Miethe P, Heinze T, Potthast A, Rosenau T (2010) Aerogels from unaltered bacterial cellulose: application of scCO(2) drying for the preparation of shaped, ultra-lightweight cellulosic aerogels. Macromol Biosci 10(4):349–352. doi: 10.1002/mabi.200900371 CrossRefGoogle Scholar
  28. Ma S, Mi Q, Yu J, He J, Zhang J (2014) Aerogel materials based on cellulose. Prog Chem 26(5):796–809. doi: 10.7536/pc131032 Google Scholar
  29. Mansikkamaki P, Lahtinen M, Rissanen K (2007) The conversion from cellulose I to cellulose II in NaOH mercerization performed in alcohol–water systems: an X-ray powder diffraction study. Carbohydr Polym 68(1):35–43. doi: 10.1016/j.carbpol.2006.07.010 CrossRefGoogle Scholar
  30. Moner-Girona M, Roig A, Molins E, Martinez E, Esteve J (1999) Micromechanical properties of silica aerogels. Appl Phys Lett 75(5):653–655. doi: 10.1063/1.124471 CrossRefGoogle Scholar
  31. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994. doi: 10.1039/c0cs00108b CrossRefGoogle Scholar
  32. Moore SW, Roca-Cusachs P, Sheetz MP (2010) Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing. Dev Cell 19(2):194–206. doi: 10.1016/j.devcel.2010.07.018 CrossRefGoogle Scholar
  33. Mwaikambo LY, Ansell MP (2001) The determination of porosity and cellulose content of plant fibers by density methods. J Mater Sci Lett 20(23):2095–2096. doi: 10.1023/a:1013703809964 CrossRefGoogle Scholar
  34. Nata IF, Sureshkumar M, Lee C-K (2011) One-pot preparation of amine-rich magnetite/bacterial cellulose nanocomposite and its application for arsenate removal. RSC Adv 1(4):625–631. doi: 10.1039/c1ra00153a CrossRefGoogle Scholar
  35. Nimeskern L, Martínez Ávila H, Sundberg J, Gatenholm P, Müller R, Stok KS (2013) Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater 22:12–21. doi: 10.1016/j.jmbbm.2013.03.005 CrossRefGoogle Scholar
  36. Pelham RJ, Y-l Wang (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci 94(25):13661–13665CrossRefGoogle Scholar
  37. Pinto RJB, Neves MC, Neto CP, Trindade T (2012) Composites of cellulose and metal nanoparticles. In: Ebrahimi F (ed) Nanotechnology and nanomaterials, Nanocomposites - new trends and developments, InTech, September 27, 2012 under CC BY 3.0 license. doi: 10.5772/50553
  38. Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55(1):35–58Google Scholar
  39. Rowlands AS, George PA, Cooper-White JJ (2008) Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Am J Physiol Cell Physiol 295(4):C1037–C1044. doi: 10.1152/ajpcell.67.2008 CrossRefGoogle Scholar
  40. Sai H, Xing L, Xiang J, Cui L, Jiao J, Zhao C, Li Z, Li F (2013) Flexible aerogels based on an interpenetrating network of bacterial cellulose and silica by a non-supercritical drying process. J Mater Chem A 1(27):7963–7970. doi: 10.1039/c3ta11198a CrossRefGoogle Scholar
  41. Saska S, Teixeira LN, de Oliveira PT, Gaspar AMM, Ribeiro SJL, Messaddeq Y, Marchetto R (2012) Bacterial cellulose–collagen nanocomposite for bone tissue engineering. J Mater Chem 22(41):22102–22112. doi: 10.1039/c2jm33762b CrossRefGoogle Scholar
  42. Schutz C, Sort J, Bacsik Z, Oliynyk V, Pellicer E, Fall A, Wagberg L, Berglund L, Bergstrom L, Salazar-Alvarez G (2012) Hard and transparent films formed by nanocellulose-TiO2 nanoparticle hybrids. PLoS One 7(10). doi: 10.1371/journal.pone.0045828
  43. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794. doi: 10.1177/004051755902901003 CrossRefGoogle Scholar
  44. Sehaqui H, Zhou Q, Berglund LA (2011a) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71(13):1593–1599. doi: 10.1016/j.compscitech.2011.07.003 CrossRefGoogle Scholar
  45. Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011b) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12(10):3638–3644. doi: 10.1021/bm2008907 CrossRefGoogle Scholar
  46. Shezad O, Khan S, Khan T, Park JK (2010) Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr Polym 82(1):173–180. doi: 10.1016/j.carbpol.2010.04.052 CrossRefGoogle Scholar
  47. Shi ZJ, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545. doi: 10.1016/j.foodhyd.2013.07.012 CrossRefGoogle Scholar
  48. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765. doi: 10.3390/polym2040728 CrossRefGoogle Scholar
  49. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494. doi: 10.1007/s10570-010-9405-y CrossRefGoogle Scholar
  50. Sun CQ (2005) True density of microcrystal line cellulose. J Pharm Sci 94(10):2132–2134. doi: 10.1002/jps.20459 CrossRefGoogle Scholar
  51. Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26(4):419–431. doi: 10.1016/j.biomaterials.2004.02.049 CrossRefGoogle Scholar
  52. Ul-Islam M, Shah N, Ha JH, Park JK (2011) Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose. Korean J Chem Eng 28(8):1736–1743. doi: 10.1007/s11814-011-0042-4 CrossRefGoogle Scholar
  53. Ul-Islam M, Khan T, Park JK (2012a) Nanoreinforced bacterial cellulose–montmorillonite composites for biomedical applications. Carbohydr Polym 89(4):1189–1197. doi: 10.1016/j.carbpol.2012.03.093 CrossRefGoogle Scholar
  54. Ul-Islam M, Khan T, Park JK (2012b) Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym 88(2):596–603. doi: 10.1016/j.carbpol.2012.01.006 CrossRefGoogle Scholar
  55. Ummartyotin S, Juntaro J, Sain M, Manuspiya H (2012) Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind Crop Prod 35(1):92–97. doi: 10.1016/j.indcrop.2011.06.025 CrossRefGoogle Scholar
  56. Steinbüchel A, Vandamme EJ, De Baets S, Steinbüchel A, Vandamme EJ, Hofrichter M, De Baets S (eds) (2002) Polysaccharides I: polysaccharides from prokaryotes, vol 5. Biopolymers. Wiley, University of CaliforniaGoogle Scholar
  57. Wada M, Sugiyama J, Okano T (1993) Native celluloses on the basis of two crystalline phase (Iα/Iβ) system. J Appl Polym Sci 49(8):1491–1496. doi: 10.1002/app.1993.070490817 CrossRefGoogle Scholar
  58. Wada M, Okano T, Sugiyama J (1997) Synchrotron-radiated X-ray and neutron diffraction study of native cellulose. Cellulose 4(3):221–232. doi: 10.1023/a:1018435806488 CrossRefGoogle Scholar
  59. Wang Y, Zhao Y, Deng Y (2008) Effect of enzymatic treatment on cotton fiber dissolution in NaOH/urea solution at cold temperature. Carbohydr Polym 72(1):178–184CrossRefGoogle Scholar
  60. W-h Guo, Frey MT, Burnham NA, Wang Y-l (2006) Substrate rigidity regulates the formation and maintenance of tissues. Biophys J 90(6):2213–2220CrossRefGoogle Scholar
  61. Wicklein B, Salazar-Alvarez G (2013) Functional hybrids based on biogenic nanofibrils and inorganic nanomaterials. J Mater Chem A 1(18):5469–5478. doi: 10.1039/c3ta01690k CrossRefGoogle Scholar
  62. Wu Z-Y, Li C, Liang H-W, Chen J-F, Yu S-H (2013a) Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew Chem Int Ed 52(10):2925–2929. doi: 10.1002/anie.201209676 CrossRefGoogle Scholar
  63. Wu ZY, Li C, Liang HW, Chen JF, Yu SH (2013b) Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew Chem Int Ed Engl 52(10):2925–2929. doi: 10.1002/anie.201209676 CrossRefGoogle Scholar
  64. Yamada Y, Hoshino K, Ishikawa T (1997) The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level. Biosci Biotechnol Biochem 61(8):1244–1251CrossRefGoogle Scholar
  65. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17(2):153. doi: 10.1002/adma.200400597 CrossRefGoogle Scholar
  66. Zeng M, Laromaine A, Feng W, Levkin PA, Roig A (2014) Origami magnetic cellulose: controlled magnetic fraction and patterning of flexible bacterial cellulose. J Mater Chem C. doi: 10.1039/c4tc00787e Google Scholar
  67. Zhang L, Ruan D, Zhou J (2001) Structure and properties of regenerated cellulose films prepared from cotton linters in NaOH/urea aqueous solution. Ind Eng Chem Res 40(25):5923–5928CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institut Ciència de Materials de BarcelonaBellaterraSpain

Personalised recommendations