, Volume 21, Issue 5, pp 3637–3645 | Cite as

Production of single-cell protein with two-step fermentation for treatment of potato starch processing waste

  • Bingnan Liu
  • Ying Li
  • Jinzhu Song
  • Lihong Zhang
  • Jiacheng Dong
  • Qian Yang
Original Paper


Potato starch processing waste is causing serious environmental problems. This study aimed to convert potato starch processing waste into single-cell protein as high-quality feed using a two-step fermentation process. The mutant strain Aspergillus niger H3 was selected after UV irradiation and ethyl methyl sulfone mutagenesis for more cellulase production. The activities of sodium carboxymethyl cellulase and filter paperase of strain H3 were 8.86 and 4.79 U, respectively, which were much higher than the parent strain (1.18 and 0.62 U). After treatment with strain H3, the cellulose degradation rate of potato residue was 80.54 %. A liquid fermentation using Bacillus licheniformis was performed as the second step. The optimized fermentation conditions were temperature of 32.8 °C, pH 6.67, and inoculum concentration of 1.78 % using the response surface method. Results of this study showed a potential application in large-scale industrial conversion.


Waste treatment Mutagenesis Cellulase Bioconversion Optimization 



Sodium carboxymethyl cellulase


Sodium carboxymethyl cellulose


Crude protein


Central composite design


Diameter of the colony


Ethyl methyl sulfone


Filter paperase


Diameter of the halo


Potato dextrose agar


Response surface method


Single-cell protein


True protein



The authors wish to thank the Chinese government for the financial support of this study under the National High Technology Research and Development Program 2012AA021404 and Heilongjiang Province Technological Project GA08C201.

Supplementary material

10570_2014_400_MOESM1_ESM.doc (226 kb)
Supplementary material 1 (DOC 226 kb)


  1. Aggelopoulos T, Katsieris K, Bekatorou A, Pandey A, Banat IM, Koutinas AA (2014) Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production. Food Chem 145:710–716. doi: 10.1016/j.foodchem.2013.07.105 CrossRefGoogle Scholar
  2. Aharoni Y, Brosh A, Orlov A, Shargal E, Gutman A (2004) Measurements of energy balance of grazing beef cows on mediterranean pasture, the effects of stocking rate and season: 1. Digesta kinetics, faecal output and digestible dry matter intake. Livest Prod Sci 90(2–3):89–100. doi: 10.1016/j.livprodsci.2004.03.007 CrossRefGoogle Scholar
  3. Bansal N, Tewari R, Soni R, Soni SK (2012) Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Manage 32(7):1341–1346. doi: 10.1016/j.wasman.2012.03.006 CrossRefGoogle Scholar
  4. Cibis E, Krzywonos M, Miskiewicz T (2006) Aerobic biodegradation of potato slops under moderate thermophilic conditions: effect of pollution load. Bioresour Technol 97(4):679–685. doi: 10.1016/j.biortech.2005.03.035 CrossRefGoogle Scholar
  5. Ciolacu D, Gorgieva S, Tampu D, Kokol V (2011) Enzymatic hydrolysis of different allomorphic forms of microcrystalline cellulose. Cellulose 18(6):1527–1541. doi: 10.1007/s10570-011-9601-4 CrossRefGoogle Scholar
  6. Couri S, Terzi SD, Pinto GAS, Freitas SP, da Costa ACA (2000) Hydrolytic enzyme production in solid-state fermentation by Aspergillus niger 3T5B8. Process Biochem 36(3):255–261. doi: 10.1016/s0032-9592(00)00209-0 CrossRefGoogle Scholar
  7. Giannoutsou EP, Meintanis C, Karagouni AD (2004) Identification of yeast strains isolated from a two-phase decanter system olive oil waste and investigation of their ability for its fermentation. Bioresour Technol 93(3):301–306. doi: 10.1016/j.biortech.2003.10.023 CrossRefGoogle Scholar
  8. Gokhale DV, Puntambekar US, Deobagkar DN, Peberdy JF (1988) Production of cellulolytic enzymes by mutants of Aspergillus-niger ncim-1207. Enzyme Microb Technol 10(7):442–445. doi: 10.1016/0141-0229(88)90040-3 CrossRefGoogle Scholar
  9. Gonzalez-Benito G, Barrocal V, Bolado S, Coca M, Garcia-Cubero MT (2009) Valorisation of by-products from food industry, for the production of single cell protein (SCP) using microalgae. New Biotech 25:S262. doi: 10.1016/j.nbt.2009.06.586 CrossRefGoogle Scholar
  10. Hill JA, Singh L, Steinmeier RC (2013) Characterization of Aspergillus niger cellulase for biomass conversion. Abstr Pap Am Chem Soc 245:432Google Scholar
  11. Immanuel G, Dhanusha R, Prema P, Palavesam A (2006) Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. Int J Environ Sci Technol 3(1):25–34. doi: 10.1007/bf03325904 CrossRefGoogle Scholar
  12. Jalasutram V, Kataram S, Gandu B, Anupoju GR (2013) Single cell protein production from digested and undigested poultry litter by Candida utilis: optimization of process parameters using response surface methodology. Clean Technol Environ Policy 15(2):265–273. doi: 10.1007/s10098-012-0504-3 CrossRefGoogle Scholar
  13. Knap I, Lund B, Kehlet AB, Hofacre C, Mathis G (2010) Bacillus licheniformis prevents necrotic enteritis in broiler chickens. Avian Dis 54(2):931–935CrossRefGoogle Scholar
  14. Kritas SK, Govaris A, Christodoulopoulos G, Burriel AR (2006) Effect of Bacillus licheniformis and Bacillus subtilis supplementation of ewe’s feed on sheep milk production and young lamb mortality. J Vet Med Ser A Physiol Pathol Clin Med 53(4):170–173. doi: 10.1111/j.1439-0442.2006.00815.x CrossRefGoogle Scholar
  15. Krzywonos M, Cibis E, Lasik M, Nowak J, Miskiewicz T (2009) Thermo- and mesophilic aerobic batch biodegradation of high-strength distillery wastewater (potato stillage)—utilisation of main carbon sources. Bioresour Technol 100(9):2507–2514. doi: 10.1016/j.biortech.2008.12.008 CrossRefGoogle Scholar
  16. Lasik M, Nowak J, Krzywonos M, Cibis E (2010) Impact of batch, repeated-batch (with cell recycle and medium replacement) and continuous processes on the course and efficiency of aerobic thermophilic biodegradation of potato processing wastewater. Bioresour Technol 101(10):3444–3451. doi: 10.1016/j.biortech.2009.12.096 CrossRefGoogle Scholar
  17. Liu BN, Song JZ, Li Y, Niu J, Wang ZY, Yang Q (2013) Towards industrially feasible treatment of potato starch processing waste by mixed cultures. Appl Biochem Biotechnol 171(4):1001–1010. doi: 10.1007/s12010-013-0401-1 CrossRefGoogle Scholar
  18. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275Google Scholar
  19. Nigam JN (2000) Cultivation of Candida langeronii in sugar cane bagasse hemicellulosic hydrolyzate for the production of single cell protein. World J Microbiol Biotechnol 16(4):367–372. doi: 10.1023/a:1008922806215 CrossRefGoogle Scholar
  20. Nigam P, Vogel M (1991) Bioconversion of sugar-industry by-products: molasses and sugar-beet pulp for single cell protein-production by yeasts. Biomass Bioenergy 1(6):339–345. doi: 10.1016/0961-9534(91)90014-4 CrossRefGoogle Scholar
  21. Nithya V, Muthukumar SP, Halami PM (2012) Safety assessment of Bacillus licheniformis Me1 isolated from milk for probiotic application. Int J Toxicol 31(3):228–237CrossRefGoogle Scholar
  22. Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33(4):305–325. doi: 10.1093/biomet/33.4.305 CrossRefGoogle Scholar
  23. Rahikainen JL, Moilanen U, Nurmi-Rantala S, Lappas A, Koivula A, Viikari L, Kruus K (2013) Effect of temperature on lignin-derived inhibition studied with three structurally different cellobiohydrolases. Bioresour Technol 146:118–125. doi: 10.1016/j.biortech.2013.07.069 CrossRefGoogle Scholar
  24. Rastegari AA, Bordbar AK, Mehnati-Najafabadi V (2010) Conformational changes and sequence analysis in cellulase from Aspergillus niger with cationic surfactant. Cellulose 17(6):1213–1225. doi: 10.1007/s10570-010-9458-y CrossRefGoogle Scholar
  25. Saleh AA, Eid YZ, Ebeid TA, Kamizono T, Ohtsuka A, Hayashi K (2011) Effects of feeding Aspergillus awamori and Aspergillus niger on growth performance and meat quality in broiler chickens. J Poult Sci 48(3):201–206. doi: 10.2141/jpsa.011019 CrossRefGoogle Scholar
  26. Sisman T, Gur O, Dogan N, Ozdal M, Algur OF, Ergon T (2013) Single-cell protein as an alternative food for zebrafish, Danio rerio: a toxicological assessment. Toxicol Ind Health 29(9):792–799. doi: 10.1177/0748233712442711 CrossRefGoogle Scholar
  27. Songsiriritthigul C, Lapboonrueng S, Pechsrichuang P, Pesatcha P, Yamabhai M (2010) Expression and characterization of Bacillus licheniformis chitinase (ChiA), suitable for bioconversion of chitin waste. Bioresour Technol 101(11):4096–4103. doi: 10.1016/j.biortech.2010.01.036 CrossRefGoogle Scholar
  28. Steinweg JM, Dukes JS, Wallenstein MD (2012) Modeling the effects of temperature and moisture on soil enzyme activity: linking laboratory assays to continuous field data. Soil Biol Biochem 55:85–92. doi: 10.1016/j.soilbio.2012.06.015 CrossRefGoogle Scholar
  29. Suzuki S, Fukuoka M, Tada S, Matsushita-Morita M, Hattori R, Kitamoto N, Kusumoto K-I (2010) Production of polygalacturonase by recombinant Aspergillus oryzae in solid-state fermentation using potato pulp. Food Sci Technol Res 16(5):517–521. doi: 10.3136/fstr.16.517 CrossRefGoogle Scholar
  30. Wang TY, Wu YH, Jiang CY, Liu Y (2010) Solid state fermented potato pulp can be used as poultry feed. Br Poult Sci 51(2):229–234CrossRefGoogle Scholar
  31. Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112CrossRefGoogle Scholar
  32. Yi PJ, Pai CK, Liu JR (2011) Isolation and characterization of a Bacillus licheniformis strain capable of degrading zearalenone. World J Microbiol Biotechnol 27(5):1035–1043. doi: 10.1007/s11274-010-0548-7 CrossRefGoogle Scholar
  33. Yu GH, Jia XQ, Wen JP, Lu WY, Wang GY, Caiyin Q, Chen YL (2011) Strain improvement of Streptomyces roseosporus for daptomycin production by rational screening of He-Ne laser and NTG induced mutants and kinetic modeling. Appl Biochem Biotechnol 163(6):729–743. doi: 10.1007/s12010-010-9078-x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Bingnan Liu
    • 1
  • Ying Li
    • 1
  • Jinzhu Song
    • 1
  • Lihong Zhang
    • 1
  • Jiacheng Dong
    • 1
  • Qian Yang
    • 1
    • 2
  1. 1.Bioengineering Center, School of Life Science and TechnologyHarbin Institute of TechnologyHarbinPeople’s Republic of China
  2. 2.State Key Laboratory of Urban Water Resource and EnvironmentHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations