Advertisement

Cellulose

, Volume 21, Issue 5, pp 3507–3514 | Cite as

Carboxymethylated nanofibrillated cellulose: effect of monovalent electrolytes on the rheological properties

  • Ali Naderi
  • Tom Lindström
Original Paper

Abstract

The effect of the ionic strength on the properties of a carboxymethylated nanofibrillated cellulose (NFC) system was investigated through rheological studies. It was shown that homogenization of pulp suspensions containing a high amount of a monovalent electrolyte leads to the production of NFC systems displaying a lower magnitude in the rheological response as compared with systems prepared at lower ionic strengths conditions. It was further shown that increasing the ionic strength of NFC suspensions after their manufacturing also results in a lowering of the rheological response. The decreased rheological response in the former case was postulated to be caused by a lowering of the delamination deficiency of the homogenization process, due to decreased swelling of the carboxymethylated pulp, caused by the screening of the charges. In the latter case (post-addition of the electrolyte), the lowering of the rheological response was postulated to be due to the compression of the electrostatic double layer, when the electrostatic repulsion between the charged fibrils diminished in the presence of the electrolyte.

Keywords

Nanofibrillated cellulose NFC Homogenization Charge density Rheology Ionic strength 

Notes

Acknowledgments

Åsa Engström is thanked for her competent supporting work. Billerud-Korsnäs, Borregaard, De la Rue, Hansol Holmen, Kemira, Korsnäs, Metsä Group, Stora Enso, Södra, Evergreen Packaging and UPM are acknowledged for their financial support.

References

  1. Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C, Garnier C, Doublier JL (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80(3):677–686. doi: 10.1016/j.carbpol.2009.11.045 CrossRefGoogle Scholar
  2. Aulin C, Karabulut E, Tran A, Wågberg L, Lindström T (2013) Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties. ACS Appl Mater Interfaces 5(15):7352–7359. doi: 10.1021/am401700n CrossRefGoogle Scholar
  3. Boluk Y, Zhao L, Incani V (2012) Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal dods. Langmuir 28(14):6114–6123. doi: 10.1021/la2035449 CrossRefGoogle Scholar
  4. Carlsson G, Kolseth P, Lindström T (1983) Polyelectrolytic swelling behaviour of chlorite delignified spruce wood fibers. Wood Sci Technol 17:69–73CrossRefGoogle Scholar
  5. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemens W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogio M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Matter Sci 45(1):1–33CrossRefGoogle Scholar
  6. Fall AB, Lindström SB, Sprakel J, Wågberg L (2013) A physical cross-linking process of cellulose nanofibril gels with shear-controlled fibril orientation. Soft Matter 9:1852–1863. doi: 10.1039/c2sm27223g CrossRefGoogle Scholar
  7. Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165. doi: 10.1021/bm801065u CrossRefGoogle Scholar
  8. Hamedi M, Karabulut E, Marais A, Herland A, Nyström G, Wågberg L (2013) Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond. Angew Chem Int Ed 52(46):12038–12042CrossRefGoogle Scholar
  9. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813Google Scholar
  10. Iotti M, Gregersen OW, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19:137–145. doi: 10.1007/s10924-010-0248-2 CrossRefGoogle Scholar
  11. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85. doi: 10.1039/c0nr00583e CrossRefGoogle Scholar
  12. Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofibre network characteristics. Biomacromolecules 9:1022–1026CrossRefGoogle Scholar
  13. Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10(9):2571–2576CrossRefGoogle Scholar
  14. Jowkarderis L, van de Ven TM (2014) Intrinsic viscosity of aqueous suspensions of cellulose nanofibrils. Cellulose 1–7. doi: 10.1007/s10570-014-0292-5
  15. Karppinen A, Vesterinen A-H, Saarinen T, Pietikäinen P, Seppälä J (2011) Effect of cationic polymethacrylates on the rheology and flocculation of microfibrillated cellulose. Cellulose 18(6):1381–1390. doi: 10.1007/s10570-011-9597-9 CrossRefGoogle Scholar
  16. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466. doi: 10.1002/anie.201001273 CrossRefGoogle Scholar
  17. Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15(3):425–433. doi: 10.1007/s10570-007-9184-2 CrossRefGoogle Scholar
  18. Lindström T (1990) Chemical factors affecting the behaviour of fibres during papermaking. Nord Pulp Pap Res J 7(4):181–192CrossRefGoogle Scholar
  19. Lindström T, Aulin C, Naderi A, Ankerfors M (2014) Microfibrillated cellulose. In: Encyclopedia of polymer science and technology. Wiley, pp 1–34. doi: 10.1002/0471440264.pst614
  20. Lowys MP, Desbrieres J, Rinaudo M (2001) Rheological characterization of cellulosic microfibril suspensions. Role of polymeric additives. Food Hydrocoll 15:25–32. doi: 10.1016/s0268-005x(00)00046-1 CrossRefGoogle Scholar
  21. Lucian LA, Rojas OJ (2009) The nanoscience and technology of renewable biomaterials. Wiley-Blackwell, OxfordCrossRefGoogle Scholar
  22. Moberg T, Rigdahl M, Stading M, Bragd EL (2014) Extensional viscosity of microfibrillated cellulose suspensions. Carbohydr Polym 102:409–412. doi: 10.1016/j.carbpol.2013.11.041 CrossRefGoogle Scholar
  23. Naderi A, Lindström T, Pettersson T (2014a) The state of carboxymethylated nanofibrils after homogenization-aided dilution from concentrated suspensions: a rheological perspective. Cellulose 21(4):2357–2368. doi: 10.1007/s10570-014-0329-9 CrossRefGoogle Scholar
  24. Naderi A, Lindström T, Sundström J (2014b) Carboxymethylated nanofibrillated cellulose: rheological studies. Cellulose 21(3):1561–1571. doi: 10.1007/s10570-014-0192-8 CrossRefGoogle Scholar
  25. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941. doi: 10.1021/bm061215p CrossRefGoogle Scholar
  26. Saarikoski E, Saarinen T, Salmela J, Seppälä J (2012) Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterisation of rheological behaviour. Cellulose 19(3):647–659. doi: 10.1007/s10570-012-9661-0 CrossRefGoogle Scholar
  27. Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7(19):8804–8809. doi: 10.1039/c1sm06050c CrossRefGoogle Scholar
  28. Shogren RL, Peterson SC, Evans KO, Kenar JA (2011) Preparation and characterization of cellulose gels from corn cobs. Carbohydr Polym 86:1351–1357. doi: 10.1016/j.carbpol.2011.06.035 CrossRefGoogle Scholar
  29. Siquiera G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765CrossRefGoogle Scholar
  30. Tanaka R, Saito T, Ishii D, Isogai A (2014) Determination of nanocellulose fibril length by shear viscosity measurement. Cellulose 1–9. doi: 10.1007/s10570-014-0196-4
  31. Tatsumi D, Ishioka S, Matsumoto T (1999) Effect of particle and salt concentrations on the rheological properties of cellulose fibrous suspensions. J Soc Rheol Jpn 27:243–248. doi: 10.1678/rheology.27.243 CrossRefGoogle Scholar
  32. Tatsumi D, Ishioka S, Matsumoto T (2002) Effect of fiber concentration and axial ratio on the rheological properties of cellulose fiber suspensions. J Soc Rheol Jpn 30:27–32CrossRefGoogle Scholar
  33. Vesterinen A-H, Myllytie P, Laine J, Seppaelae J (2010) The effect of water-soluble polymers on rheology of microfibrillar cellulose suspension and dynamic mechanical properties of paper sheet. J Appl Polym Sci 116(5):2990–2997. doi: 10.1002/app.31832 Google Scholar
  34. Wågberg L, Winter L, Ödberg L, Lindström T (1987) On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials. Colloids Surf 27:163–173CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Innventia ABStockholmSweden

Personalised recommendations