, Volume 21, Issue 5, pp 3323–3338 | Cite as

Synthesis and crystallization-induced microphase separation of cellulose triacetate-block-poly(γ-benzyl-l-glutamate)

  • Hiroshi Kamitakahara
  • Akihiro Baba
  • Arata Yoshinaga
  • Ryo Suhara
  • Toshiyuki Takano
Original Paper


This article describes the first observation of crystallization-induced microphase separation in thin film and bulk cellulose triacetate-block-poly(γ-benzyl-l-glutamate) (PBLG) [cellulose triacetate (CTA)-b-PBLG] via copper-catalyzed azide–alkyne cycloaddition (CuAAC) between azido-functionalized CTA at the reducing end and alkyne-functionalized PBLG at the C-terminus. The reactivity of the amino group at the C-1 position of the glucosyl residue at the reducing end for the initiation reaction of the ring-opening polymerization (ROP) of γ-benzyl-l-glutamate N-carboxyanhydride was compared to that of the azido group at the reducing end of CTA for CuAAC, with PBLG bearing an alkyne group at the C-terminus. Although the amino group at the reducing end of CTA exhibited no reactivity as a macroinitiator for ROP of BLG, the azido group at the reducing end of CTA reacted with the alkyne group at the C-terminus of PBLG to afford CTA-b-PBLG. The structure of CTA-b-PBLG was characterized by 1H- and 13C-nuclear magnetic resonance spectroscopies, infrared spectroscopy, differential scanning calorimetry, and wide angle X-ray diffractometry. Microphase separation of the film and bulk of CTA-b-PBLG was clearly shown by atomic force microscopy, field-emission scanning electron microscopy, and transmission electron microscopy.


Diblock copolymer Cellulose triacetate (CTA) Poly(benzyl-l-glutamate) (PBLG) Copper-catalyzed azide–alkyne cycloaddition Microphase separation 



We are indebted to Prof. Yoshiyuki Nishio of Kyoto University for the discussion on thermal analysis. We thank the Japan Society for the Promotion of Science (JSPS) for their financial support of this study, in part, through Grant-in-Aid for Scientific Research (nos. 21580205 and 24380092), and a Sekisui Chemical Grant Program for Research.

Supplementary material

10570_2014_383_MOESM1_ESM.pdf (15.1 mb)
Several 1H-NMR spectra for selected compounds are available as Supporting Information. (PDF 15432 kb)


  1. Agut W, Agnaou R, Lecommandoux S, Taton D (2008) Synthesis of block copolypeptides by click chemistry. Macromol Rapid Commun 29:1147–1155. doi: 10.1002/Marc.200800123 CrossRefGoogle Scholar
  2. Ando I, Yamada S, Sanefuji T, Shoji A, Uematsu I (1987) Effect of pressure on the molecular motion of a poly(γ-benzyl L-glutamate) lyotropic liquid crystal as studied by proton nuclear magnetic resonance. Polymer 28:716–720. doi: 10.1016/0032-3861(87)90218-7 CrossRefGoogle Scholar
  3. Caillol S, Lecommandoux S, Mingotaud A-F, Schappacher M, Soum A, Bryson N, Meyrueix R (2003) Synthesis and self-assembly properties of peptide-polylactide block copolymers. Macromolecules 36:1118–1124. doi: 10.1021/ma021187c CrossRefGoogle Scholar
  4. Cao H, Yao J, Shao Z (2012) Synthesis of poly(γ-benzyl-L-glutamate) with well-defined terminal structures and its block polypeptides with alanine, leucine and phenylalanine. Polym Int 61:774–779. doi: 10.1002/pi.4138 CrossRefGoogle Scholar
  5. Ceresa RJ (1961) The synthesis of block and graft copolymer of cellulose and its derivatives. Polymer 2:213–219CrossRefGoogle Scholar
  6. Chen D (2013) Crystal behavior of semicrystalline polystyrene-block-poly(L-lactide) diblock copolymer in thin films with various structures. Polym Int 62:1343–1350. doi: 10.1002/pi.4426 CrossRefGoogle Scholar
  7. Chirgadze YN, Brazhnikov EV (1974) Intensities and other spectral parameters of infrared amide bands of polypeptides in the α-helical form. Biopolymers 13:1701–1712. doi: 10.1002/bip.1974.360130902 CrossRefGoogle Scholar
  8. Chirgadze YN, Brazhnikov EV, Nevskaya NA (1976) Intramolecular distortion of the α-helical structure of polypeptides. J Mol Biol 102:781–792. doi: 10.1016/0022-2836(76)90291-6 CrossRefGoogle Scholar
  9. Daly WH, Poche D (1988) The preparation of N-Carboxyanhydrides of alpha-amino-acids using bis(trichloromethyl)carbonate. Tetrahedron Lett 29:5859–5862. doi: 10.1016/S0040-4039(00)82209-1 CrossRefGoogle Scholar
  10. de Oliveira W, Glasser WG (1994) Multiphase materials with lignin 13. Block-copolymers with cellulose propionate. Polymer 35:1977–1985CrossRefGoogle Scholar
  11. Dulmage WJ (1957) The molecular and crystal structure of cellulose triacetate. J Polym Sci 26:277–288. doi: 10.1002/Pol.1957.1202611402 CrossRefGoogle Scholar
  12. Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688. doi: 10.1016/S0079-6700(01)00027-2 CrossRefGoogle Scholar
  13. Enomoto Y, Kamitakahara H, Takano T, Nakatsubo F (2006) Synthesis of diblock copolymers with cellulose derivatives. 3. Cellulose derivatives carrying a single pyrene group at the reducing-end and fluorescent studies of their self-assembly systems in aqueous NaOH solutions. Cellulose 13:437–448CrossRefGoogle Scholar
  14. Enomoto-Rogers Y, Kamitakahara H, Yoshinaga A, Takano T (2011) Synthesis of diblock copolymers with cellulose derivatives 4. Self-assembled nanoparticles of amphiphilic cellulose derivatives carrying a single pyrene group at the reducing-end. Cellulose 18:1005–1014. doi: 10.1007/S10570-011-9549-4 CrossRefGoogle Scholar
  15. Farrar D, Yu MS, West JE, Moon W (2010) Piezoelectric biopolymer-polymer composite films and microfibers. Johns Hopkins APL Tech Dig 28:258–259Google Scholar
  16. Feger C, Cantow HJ (1980) Cellulose containing block copolymers 1. Synthesis of trimethylcellulose-(b-poly(oxytetramethylene))-star block copolymers. Polym Bull 3:407–413Google Scholar
  17. Floudas G, Papadopoulos P, Klok HA, Vandermeulen GWM, Rodriguez-Hernandez J (2003) Hierarchical self-assembly of poly(gamma-benzyl-L-glutamate)-poly(ethylene glycol)-poly(gamma-benzyl-L-glutamate) rod-coil-rod triblock copolymers. Macromolecules 36:3673–3683. doi: 10.1021/Ma025918k CrossRefGoogle Scholar
  18. Habraken GJM, Wilsens KHRM, Koning CE, Heise A (2011) Optimization of N-carboxyanhydride (NCA) polymerization by variation of reaction temperature and pressure. Polym Chem 2:1322–1330. doi: 10.1039/C1py00079a CrossRefGoogle Scholar
  19. Hiratsuka N, Shiba K, Shinomura K, Hosaki S, Cho H, Nagasaki A, Kobayashi S (1994) Urinary protein-fractions in healthy-subjects using cellulose-acetate membrane electrophoresis followed by staining with acid-violet-17. Biol Pharm Bull 17:1355–1357CrossRefGoogle Scholar
  20. Howell B, Reneker DH (1990) Morphology of polymer-films and single molecules. J Appl Polym Sci 40:1663–1682. doi: 10.1002/App.1990.070400921 CrossRefGoogle Scholar
  21. Ibarboure E, Papon E, Rodriguez-Hernandez J (2007) Nanostructured thermotropic PBLG–PDMS–PBLG block copolymers. Polymer 48:3717–3725. doi: 10.1016/j.polymer.2007.04.046 CrossRefGoogle Scholar
  22. Jadage CD, Lonikar SV, Wadgaonkar PP (2004) Starch and cellulose based graft and block copolymers. In: Society for polymer science, India, pp PD.1/1–PD.1/5Google Scholar
  23. Kadokawa J-I, Karasu M, Tagaya H, Chiba K (1996) Synthesis of a block copolymer consisting of oligocellulose and oligochitin. J Macromol Sci, Pure Appl Chem A33:1735–1743. doi: 10.1080/10601329608010937 CrossRefGoogle Scholar
  24. Kamatani A, Kikuchi Y (2002) Carbohydrate diblock and triblock copolymers with desirable molecular weights and their manufacture. JP2002146025A,Google Scholar
  25. Kamitakahara H, Nakatsubo F (2005) Synthesis of diblock copolymers with cellulose derivatives. 1. Model study with azidoalkyl carboxylic acid and cellobiosylamine derivative. Cellulose 12:209–219CrossRefGoogle Scholar
  26. Kamitakahara H, Enomoto Y, Hasegawa C, Nakatsubo F (2005) Synthesis of diblock copolymers with cellulose derivatives. 2. Characterization and thermal properties of cellulose triacetate-block-oligoamide-15. Cellulose 12:527–541CrossRefGoogle Scholar
  27. Kang IK, Ito Y, Sisido M, Imanishi Y (1988) Gas permeability of the film of block and graft copolymers of polydimethylsiloxane and poly(gamma-benzyl L-glutamate). Biomaterials 9:349–355CrossRefGoogle Scholar
  28. Kim S, Stannett VT, Gilbert RD (1973) A new class of biodegradable polymers. J Polym Sci Polym Lett 11:731–735CrossRefGoogle Scholar
  29. Kim S, Stannett VT, Gilbert RD (1976) Biodegradable cellulose block copolymers. J Macromol Sci Pt A Chem A10:671–679CrossRefGoogle Scholar
  30. Koleske JV, Lundberg RD (1969) Secondary transitions in poly(γ-benzyl-L-glutamate) and in poly(γ-benzyl-DL-glutamate). Macromolecules 2:438–440. doi: 10.1021/ma60010a024 CrossRefGoogle Scholar
  31. Kubota R, Machii R, Hiratsuka N, Hotta O, Itoh Y, Kobayashi S, Shiba K (2003) Cellulose acetate membrane electrophoresis in the analysis of urinary proteins in patients with tubulointerstitial nephritis. J Clinic Lab Anal 17:44–51. doi: 10.1002/Jcla.10066 CrossRefGoogle Scholar
  32. Lonikar SV, Gilbert RD, Fornes RE, Stejskal E (1990) Block copolymers of polysaccharides and polyamino acids. Abstracts of papers of the American Chemical Society 199:364-POLYGoogle Scholar
  33. Lopez-Carrasquero F, Aleman C, Munoz-Guerra S (1995) Conformational analysis of helical poly(β-L-aspartate)s by IR dichroism. Biopolymers 36:263–271CrossRefGoogle Scholar
  34. Machii R, Kubota R, Hiratsuka N, Sugimoto K, Masudo R, Kurihara Y, Kobayashi S, Shiba K (2004) Urinary protein fraction in healthy subjects using cellulose acetate membrane electrophoresis followed by colloidal silver staining. J Clinic Lab Anal 18:231–236. doi: 10.1002/Jcla.20028 CrossRefGoogle Scholar
  35. Machii R, Sakatume M, Kubota R, Kobayashi S, Gejyo F, Shiba K (2005) Examination of the molecular diversity of alpha(1) antitrypsin in urine: deficit of an alpha(1) globulin fraction on cellulose acetate membrane electrophoresis. J Clinic Lab Anal 19:16–21. doi: 10.1002/Jcla.20049 CrossRefGoogle Scholar
  36. Mckinnon AJ, Tobolsky AV (1966) Structure and transition in solid state of a helical macromolecule. J Phys Chem 70:1453. doi: 10.1021/J100877a018 CrossRefGoogle Scholar
  37. Mezger T, Cantow HJ (1983a) Cellulose containing block co-polymers.4. Cellulose triester macroinitiators. Angew Makromol Chem 116:13–27CrossRefGoogle Scholar
  38. Mezger T, Cantow HJ (1983b) Cellulose containing block co-polymers. 5. Threeblock co-polymer syntheses via macroinitiator. Makromol Chem, Rapid Commun 4:313–320CrossRefGoogle Scholar
  39. Mezger T, Cantow HJ (1984) Cellulose-containing triblock copolymers—syntheses via cellulosic dithiodiaryl photoinitiators. Polym Photochem 5:49–56CrossRefGoogle Scholar
  40. Miyazawa T (1960) Perturbation treatment of the characteristic vibrations of polypeptide chains in various configurations. J Chem Phys 32:1647–1652. doi: 10.1063/1.1730999 CrossRefGoogle Scholar
  41. Nakagawa A, Kamitakahara H, Takano T (2012) Synthesis and thermoreversible gelation of diblock methylcellulose analogues via Huisgen 1,3-dipolar cycloaddition. Cellulose 19:1315–1326. doi: 10.1007/S10570-012-9703-7 CrossRefGoogle Scholar
  42. Papadopoulos P, Floudas G, Klok HA, Schnell I, Pakula T (2004) Self-assembly and dynamics of poly(γ-benzyl-L-glutamate) peptides. Biomacromolecules 5:81–91. doi: 10.1021/bm034291q CrossRefGoogle Scholar
  43. Papadopoulos P, Floudas G, Schnell I, Aliferis T, Iatrou H, Hadjichristidis N (2005) Nanodomain-induced chain folding in poly(gamma-benzyl-L-glutamate)-b-polyglycine diblock copolymers. Biomacromolecules 6:2352–2361. doi: 10.1021/Bm0501860 CrossRefGoogle Scholar
  44. Pohjola L, Eklund V (1977) Polyurethane block copolymers from cellulose acetate. Pap Puu 3:117–120Google Scholar
  45. Roche E, Chanzy H, Boudeulle M, Marchessault RH, Sundararajan P (1978) 3-dimensional crystalline-structure of cellulose triacetate-ii. Macromolecules 11:86–94. doi: 10.1021/Ma60061a016 CrossRefGoogle Scholar
  46. Sakaguchi M, Ohura T, Iwata T, Takahashi S, Akai S, Kan T, Murai H, Fujiwara M, Watanabe O, Narita M (2010) Diblock copolymer of bacterial cellulose and poly(methyl methacrylate) initiated by chain-end-type radicals produced by mechanical scission of glycosidic linkages of bacterial cellulose. Biomacromolecules 11:3059–3066. doi: 10.1021/Bm100879v CrossRefGoogle Scholar
  47. Sanchez-Ferrer A, Mezzenga R (2010) Secondary structure-induced micro- and macrophase separation in rod-coil polypeptide diblock, triblock, and star-block copolymers. Macromolecules (Washington DC, U S) 43:1093–1100. doi: 10.1021/ma901951s
  48. Sanefuji T, Ando I, Inoue Y, Uematsu I, Shoji A (1985) Effect of pressure on the magnetic orientation of the poly(γ-benzyl L-glutamate) liquid crystal as studied by proton NMR under high pressure. Macromolecules 18:583–585. doi: 10.1021/ma00145a048 CrossRefGoogle Scholar
  49. Toriumi H, Uematsu I (1984) Optical properties of lyotropic poly(γ-benzyl L-glutamate) liquid crystals. Mol Cryst Liq Cryst 116:21–33. doi: 10.1080/00268948408072493 CrossRefGoogle Scholar
  50. Toriumi H, Kusumi Y, Uematsu I, Uematsu Y (1979) Thermally induced inversion of the cholesteric sense in lyotropic polypeptide liquid crystals. Polym J 11:863–869. doi: 10.1295/polymj.11.863 CrossRefGoogle Scholar
  51. Toriumi H, Minakuchi S, Uematsu Y, Uematsu I (1980) Helical twisting power of poly(γ-benzyl L-glutamate) liquid crystals in mixed solvents. Polym J (Tokyo) 12:431–437. doi: 10.1295/polymj.12.431 CrossRefGoogle Scholar
  52. Toriumi H, Minakuchi S, Uematsu I (1981) Concentration and temperature dependence of the helical twisting power of poly(γ-benzyl L-glutamate) liquid crystals in m-cresol. J Polym Sci Polym Phys Ed 19:1167–1169. doi: 10.1002/pol.1981.180190715 CrossRefGoogle Scholar
  53. Toriumi H, Yahagi K, Uematsu I, Uematsu Y (1983) Cholesteric structure of lyotropic poly(γ-benzyl L-glutamate) liquid crystals. Mol Cryst Liq Cryst 94:267–284. doi: 10.1080/15421408308084262 CrossRefGoogle Scholar
  54. Trent JS, Scheinbeim JI, Couchman PR (1983) Ruthenium tetraoxide staining of polymers for electron-microscopy. Macromolecules 16:589–598. doi: 10.1021/Ma00238a021 CrossRefGoogle Scholar
  55. Tsai ML, Chen SH, Marshall KL, Jacobs SD (1990) Thermotropic and optical properties of chiral nematic polymers. Int J Thermophys 11:213–223. doi: 10.1007/bf00503872 CrossRefGoogle Scholar
  56. Uematsu I, Uematsu Y (1984) Polypeptide liquid crystals. Adv Polym Sci 59:37–73CrossRefGoogle Scholar
  57. Vivatpanachart S, Tsujita Y, Takizawa A (1981) Gas permeability of the racemic form of poly(γ-benzyl glutamate). Makromol Chem 182:1197–1206CrossRefGoogle Scholar
  58. Wang K, Liang LY, Lin SL, He XH (2008) Synthesis of well-defined ABC triblock copolymers with polypeptide segments by ATRP and click reactions. Eur Polym J 44:3370–3376. doi: 10.1016/J.Eurpolymj.07.042 CrossRefGoogle Scholar
  59. Watanabe J, Uematsu I (1984) Anomalous properties of poly(γ-benzyl L-glutamate) film composed of unusual 7/2 helices. Polymer 25:1711–1717. doi: 10.1016/0032-3861(84)90242-8 CrossRefGoogle Scholar
  60. Weiss RA, Shao L, Lundberg RD (1992) Melt-processable polypeptide/ionomer molecular composites. Macromolecules 25:6370–6372. doi: 10.1021/ma00049a039 CrossRefGoogle Scholar
  61. Yagi S, Kasuya N, Fukuda K (2010) Synthesis and characterization of cellulose-b-polystyrene. Polym J (Tokyo, Jpn) 42:342–348. doi: 10.1038/pj.2009.342
  62. Zhou QH, Zheng JK, Shen ZH, Fan XH, Chen XF, Zhou QF (2010) Synthesis and hierarchical self-assembly of rod rod block copolymers via click chemistry between mesogen-jacketed liquid crystalline polymers and helical polypeptides. Macromolecules 43:5637–5646. doi: 10.1021/Ma1007418 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Hiroshi Kamitakahara
    • 1
  • Akihiro Baba
    • 1
  • Arata Yoshinaga
    • 1
  • Ryo Suhara
    • 1
  • Toshiyuki Takano
    • 1
  1. 1.Graduate School of AgricultureKyoto UniversityKyotoJapan

Personalised recommendations