, Volume 21, Issue 4, pp 2445–2456 | Cite as

Surface modification of oxidized cellulose haemostat by argon plasma treatment

  • Vladimíra Vosmanska
  • Katerina Kolarova
  • Silvie Rimpelova
  • Vaclav Svorcik
Original Paper


In this paper we focused on cold plasma treatment of oxidized cellulose haemostat. Oxidized cellulose was modified in inert argon plasma. The changes of surface composition were examined by XPS and FTIR. Surface morphology of fibres was studied by SEM. Gravimetry was used to study ablation and water absorption. Antibacterial effect of pristine and plasma treated samples was examined by growth of Escherichia coli and Staphylococcus epidermidis. Behaviour of pristine and plasma treated samples in water, physiological saline solution and phosphate buffered saline was observed by changes in the pH of their solutions. Modification of oxidized cellulose by inert argon plasma caused significant changes in the chemical composition of its surface layers as well as changes in morphology of those layers while maintaining or improving the antibacterial properties. We found out that modification by inert argon plasma improves the properties necessary for haemostatic function of oxidized cellulose.


Oxidized cellulose Argon plasma treatment Surface chemical analyses Antibacterial tests Haemostasis 



This work was financially supported by GA CR under the project No. P108/12/1168.


  1. Bajerová M, Krejčová K, Rabišková M, Gajdziok J, Masteiková R (2009) Oxycellulose: significant characteristics in relation to its pharmaceutical and medical applications. Adv Polym Technol 28:199–208. doi: 10.1002/adv.20161 CrossRefGoogle Scholar
  2. Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol 45:493–496Google Scholar
  3. Bazaka K, Jacob MV, Crawford RJ, Ivanova EP (2011) Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater 7:2015–2028. doi: 10.1016/j.actbio.2010.12.024 CrossRefGoogle Scholar
  4. Chan CM, Ko TM, Hiraoka H (1996) Polymer surface modification by plasmas and photons. Surf Sci Rep 24:1–54. doi: 10.1016/0167-5729(96)80003-3 CrossRefGoogle Scholar
  5. Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng, R 36:143–206. doi: 10.1016/S0927-796X(02)00004-9 CrossRefGoogle Scholar
  6. Dimitrijevich SD, Tatarko M, Gracy RW, Linsky CB, Chen C (1990a) Biodegradation of oxidized regenerated cellulose. Carbohydr Res 195:247–256. doi: 10.1016/0008-6215(90)84169-U CrossRefGoogle Scholar
  7. Dimitrijevich SD, Tatarko M, Gracy RW, Wise GE, Oakford LX, Linsky CB, Kamp L (1990b) In vivo degradation of oxidized, regenerated cellulose. Carbohydr Res 198:331–341. doi: 10.1016/0008-6215(90)84303-C CrossRefGoogle Scholar
  8. France RM, Short RD (1998) Plasma treatment of polymers: the effect of energy transfer from an argon plasma on the surface chemistry of polystyrene, and polypropylene. Langmuir 14:4827–4835. doi: 10.1021/la9713053 CrossRefGoogle Scholar
  9. Gustafsson I, Cars O, Andersson DI (2003) Fitness of antibiotic resistant Staphylococcus epidermidis assessed by competition on the skin of human volunteers. J Antimicrob Chemother 52:258–263. doi: 10.1093/jac/dkg331 CrossRefGoogle Scholar
  10. Hummel D, Scholl F (1969) Infrared analysis of polymers, resins, and additives: an atlas, vol. 1 Plastics, elastomers fibres and resins, part I: text. Wiley, New York pp 101, 111–114Google Scholar
  11. Kang BS, Na YC, Jin YW (2012) Comparison of the wound healing effect of cellulose and gelatine: an in vivo study. Arch Plast Surg 39:317–321. doi: 10.5999/aps.2012.39.4.317 CrossRefGoogle Scholar
  12. Kolářová K, Vosmanská V, Rimpelová S, Švorčík V (2013) Effect of plasma treatment on cellulose fibre. Cellulose 20:953–961. doi: 10.1007/s10570-013-9863-0 CrossRefGoogle Scholar
  13. Křížová P, Mášová L, Suttnar J, Salaj P, Dyr JE, Homola J, Pecka M (2007) The influence of intrinsic coagulation pathway on blood platelets activation by oxidized cellulose. J Biomed Mater Res, Part A 82A:274–280. doi: 10.1002/jbm.a.31060 CrossRefGoogle Scholar
  14. Lewis KM, Spazierer D, Urban MD, Lin L, Redl H, Goppelt A (2013) Comparison of regenerated and non-regenerated oxidized cellulose hemostatic agents. Eur Sur 45:2013–2020. doi: 10.1007/s10353-013-0222-z Google Scholar
  15. Macy JM, Farrad JR, Montgomery L (1982) Cellulolytic and non-cellulolytic bacteria in rat gastrintestinal tracts. Appl Environ Microbiol 44:1428–1434Google Scholar
  16. Moisan M, Barbeau J, Crevier MC, Pelletier J, Philip N, Saoudi B (2002) Plasma sterilization. Methods and mechanisms. Pure Appl Chem 74:349–358. doi: 10.1351/pac200274030349 CrossRefGoogle Scholar
  17. Moreira AJ, Mansano RD, De Pinto JA, Ruas JA, Ruas R, Zambon S, Da Silva VM, Verdonck PB (2004) Sterilization by oxygen plasma. Appl Surf Sci 235:151–155. doi: 10.1016/j.apsusc.2004.05.128 CrossRefGoogle Scholar
  18. Nithya E, Radhai R, Rajendran R, Shalinia S, Rajendran V, Jayakumar S (2010) Synergetic effect of DC air plasma and cellulase enzyme treatment on the hydrophilicity of cotton fabric. Carbohydr Polym 83:1652–1658. doi: 10.1016/j.carbpol.2010.10.027 CrossRefGoogle Scholar
  19. Pendharkar SM, Gorman AJ (2004) Hemostatic wound dressing containing aldehyde-modified polysaccharide and hemostatic agents. EP1424086Google Scholar
  20. Socrates G (2004) Infrared and Raman characteristic group frequencies: tables and charts, 3rd edn. Wiley, New YorkGoogle Scholar
  21. Spangler D, Rothenburger S, Nguyen K, Jampani H, Weiss S, Bhende S (2004) In vitro antimicrobial activity of oxidized cellulose against antibiotic resistant microorganisms. Surg Infect 4:255–262. doi: 10.1089/109629603322419599 CrossRefGoogle Scholar
  22. Sun S, Suna J, Yao L, Qiu Y (2011) Wettability and sizing property improvement of raw cotton yarns treated with He/O2 atmospheric pressure plasma jet. Appl Surf Sci 257:2377–2382. doi: 10.1016/j.apsusc.2010.09.106 CrossRefGoogle Scholar
  23. Švorčík V, Hnatowicz V (2007) Properties of polymers modified by plasma discharge and ion beam. In: Albertov LB (ed) Polymer degradation and stability, 1st edn. Nova Sci Publ, New York, pp 171–216Google Scholar
  24. Švorčík V, Kolářová K, Slepička P, Macková A, Novotná M, Hnatowicz V (2006) Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polym Degrad Stab 91:1219–1225. doi: 10.1016/j.polymdegradstab.2005.09.007 CrossRefGoogle Scholar
  25. Švorčík V, Řezníčková A, Sajdl P, Kolská Z, Makajová Z, Slepička P (2011) Au nanoparticles grafted on plasma treated polymers. J Mater Sci 46:7917–7922. doi: 10.1007/s10853-011-5920-y CrossRefGoogle Scholar
  26. Topalovic T, Nierstrasz AV, Bautista L, Jocic D, Navarro A, Wermoeskerken MCGM (2007) XPS and contact angle study of cotton surface oxidation by catalytic bleaching. Colloids Surf 76:85. doi: 10.1016/j.colsurfa.2006.09.026 Google Scholar
  27. Vaideki K, Jayakumar S, Rajendran R, Thilagavathi G (2007) Investigation on the effect of RF air plasma and neem leaf extract treatment on the surface modification and antimicrobial activity of cotton fabric. Appl Surf Sci 254:2472–2478. doi: 10.1016/j.apsusc.2007.09.088 CrossRefGoogle Scholar
  28. Yassen M, Pan F, Zhao X, Lu JR (2011) Surface modification to improve biocompatibility. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, pp 65–81CrossRefGoogle Scholar
  29. Yasuko T (2005) Clinical benefits and risk analysis of topical hemostat: a review. J Artif Organs 8:137–142. doi: 10.1007/s10047-005-0296-x CrossRefGoogle Scholar
  30. Zhu X, Chian SK, Chan-Park MBE, Lee ST (2005) Effect of argon plasma treatment on proliferation of human-skin-derived fibroblast on chitosan membrane in vitro. J Biomed Mater Res, Part A 73A:264–274. doi: 10.1002/jbm.a.30211 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Vladimíra Vosmanska
    • 1
  • Katerina Kolarova
    • 1
  • Silvie Rimpelova
    • 2
  • Vaclav Svorcik
    • 1
  1. 1.Department of Solid State EngineeringICT PraguePragueCzech Republic
  2. 2.Department of Biochemistry and MicrobiologyICT PraguePragueCzech Republic

Personalised recommendations