, Volume 21, Issue 4, pp 2219–2231 | Cite as

Vibrational sum-frequency-generation (SFG) spectroscopy study of the structural assembly of cellulose microfibrils in reaction woods

  • Kabindra Kafle
  • Rui Shi
  • Christopher M. Lee
  • Ashutosh Mittal
  • Yong Bum Park
  • Ying-Hsuan Sun
  • Sunkyu Park
  • Vincent Chiang
  • Seong H. Kim
Original Paper


The cellulose microfibril assemblies in secondary cell walls of tension wood and compression wood were studied with vibrational sum frequency generation (SFG) spectroscopy. The tension wood contains the gelatinous layer with highly-crystalline and highly-aligned cellulose microfibrils. The SFG spectral features of tension wood changed depending on the azimuth angle between the polarization of the incident IR beam and the preferential alignment axis of the cellulose microfibrils. The SFG spectra of the compression wood did not show any dependence on the azimuth angle, implying that the overall orientation of cellulose microfibrils in compression wood is not highly aligned. Instead, the decrease of cellulose content in compression wood brought about larger separation between cellulose microfibrils, which was manifested as changes in CH2/OH intensity ratio in SFG spectra. These results implied that SFG spectral features are sensitive to cellulose microfibril alignments and inter-fibrillar separations.


Reaction wood Tension wood Compression wood Cellulose microfibril assembly Sum-frequency-generation spectroscopy X-ray diffraction 



This work was supported by The Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award Number DE-SC0001090. The P. trichocarpa and P. taeda samples were produced with the support from the Forest Biotechnology Industrial Research Consortium (FORBIRC) at North Carolina State University and The National Science Foundation, Plant Genome Research Program DBI-092239. The trunk section of the 18 year old P. taeda tree was generously provided by Prof. Hou-min Chang at North Carolina State University.

Supplementary material

10570_2014_322_MOESM1_ESM.doc (7.7 mb)
Supplementary material 1 (DOC 7867 kb)


  1. Åkerholm M, Hinterstoisser B, Salmén L (2004) Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohydr Res 339(3):569–578CrossRefGoogle Scholar
  2. Araki J, Kuga S (2001) Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir 17(15):4493–4496CrossRefGoogle Scholar
  3. Araki J, Wada M, Kuga S (2000) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17(1):21–27CrossRefGoogle Scholar
  4. Barnett J (1981) Secondary xylem cell development. Xylem cell development. Castle House Publications, Tunbridge Wells, pp 47–95Google Scholar
  5. Barnett J, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev 79(2):461–472CrossRefGoogle Scholar
  6. Barnette AL, Bradley LC, Veres BD, Schreiner EP, Park YB, Park J, Park S, Kim SH (2011) Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromolecules 12(7):2434–2439CrossRefGoogle Scholar
  7. Barnette AL, Lee C, Bradley LC, Schreiner EP, Park YB, Shin H, Cosgrove DJ, Park S, Kim SH (2012) Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. Carbohydr Polym 89(3):802–809CrossRefGoogle Scholar
  8. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054CrossRefGoogle Scholar
  9. Benziman M, Haigler CH, Brown RM, White AR, Cooper KM (1980) Cellulose biogenesis: polymerization and crystallization are coupled processes in Acetobacter xylinum. PNAS 77(11):6678–6682CrossRefGoogle Scholar
  10. Blanchette RA, Obst JR, Timell TE (1994) Biodegradation of compression wood and tension wood by white and brown rot fungi. Holzforschung 48(s1):34–42CrossRefGoogle Scholar
  11. Brown RM Jr, Montezinos D (1976) Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane. PNAS 73(1):143–147CrossRefGoogle Scholar
  12. Brown RM, Willison J, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. PNAS 73(12):4565–4569CrossRefGoogle Scholar
  13. Bullivant S (1974) Freeze-etching techniques applied to biological membranes. Philos Trans R Soc London Ser B:5–14CrossRefGoogle Scholar
  14. Daniel G, Filonova L, Kallas ÅM, Teeri TT (2006) Morphological and chemical characterisation of the G-layer in tension wood fibres of Populus tremula and Betula verrucosa: Labelling with cellulose-binding module CBM1HjCel7A and fluorescence and FE-SEM microscopy. Holzforschung 60(6):618–624CrossRefGoogle Scholar
  15. Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54(3):597–606CrossRefGoogle Scholar
  16. Färber J, Lichtenegger H, Reiterer A, Stanzl-Tschegg S, Fratzl P (2001) Cellulose microfibril angles in a spruce branch and mechanical implications. J Mater Sci 36(21):5087–5092CrossRefGoogle Scholar
  17. Graf A, Schlereth A, Stitt M, Smith AM (2010) Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. PNAS 107(20):9458–9463CrossRefGoogle Scholar
  18. Habibi Y, Goffin A-L, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly([varepsilon]-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18(41):5002–5010. doi: 10.1039/b809212e CrossRefGoogle Scholar
  19. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479CrossRefGoogle Scholar
  20. Handakumbura PP, Matos DA, Osmont KS, Harrington MJ, Heo K, Kafle K, Kim SH, Baskin TI, Hazen SP (2013) Perturbation of Brachypodium distachyon CELLULOSE SYNTHASE A4 or 7 results in abnormal cell walls. BMC Plant Biol 13(1):131CrossRefGoogle Scholar
  21. Hanley SJ, Revol J-F, Godmout L, Gray DG (1997) Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist. Cellulose 4(3):209–220CrossRefGoogle Scholar
  22. Hieu HC, Tuan NA, Li H, Miyauchi Y, Mizutani G (2011) Sum frequency generation microscopy study of cellulose fibers. Appl Spectrosc 65(11):1254–1259CrossRefGoogle Scholar
  23. Horikawa Y, Clair B, Sugiyama J (2009) Varietal difference in cellulose microfibril dimensions observed by infrared spectroscopy. Cellulose 16(1):1–8CrossRefGoogle Scholar
  24. Johansen DA (1940) Plant microtechnique, 1st edn. McGraw-Hill Book Co. Ltd, New YorkGoogle Scholar
  25. Kafle K, Greeson K, Lee CM, Kim SH (2014a) Cellulose polymorphs and physical properties of cotton fabrics processed with commercial textile mills for mercerization and liquid ammonia treatments. Text Res J. doi: 10.1177/0040517514527379 Google Scholar
  26. Kafle K, Xi X, Lee C, Tittmann B, Cosgrove D, Park Y, Kim S (2014b) Cellulose microfibril orientation in onion (Allium cepa L.) epidermis studied by atomic force microscopy (AFM) and vibrational sum frequency generation (SFG) spectroscopy. Cellulose 21(2):1075–1086CrossRefGoogle Scholar
  27. Kim SH, Lee CM, Kafle K (2013a) Characterization of crystalline cellulose in biomass: basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean J Chem Eng 30(12):2127–2141CrossRefGoogle Scholar
  28. Kim SH, Lee CM, Kafle K, Park YB, Xi X (2013b) Vibrational sum frequency generation (SFG) spectroscopic study of crystalline cellulose in biomass. In: Proc. SPIE 8845, pp 884501–884508. doi: 10.1117/12.2024099
  29. Kong L, Lee CM, Kim SH, Ziegler GR (2014) Characterization of starch polymorphic structures using vibrational sum frequency generation (SFG) spectroscopy. J Phys Chem B 118(7):1775–1783CrossRefGoogle Scholar
  30. LaComb R, Nadiarnykh O, Townsend SS, Campagnola PJ (2008) Phase matching considerations in second harmonic generation from tissues: effects on emission directionality, conversion efficiency and observed morphology. Opt Commun 281(7):1823–1832CrossRefGoogle Scholar
  31. Lambert AG, Davies PB, Neivandt DJ (2005) Implementing the theory of sum frequency generation vibrational spectroscopy: a tutorial review. Appl Spectrosc Rev 40(2):103–145CrossRefGoogle Scholar
  32. Langford Jt, Wilson A (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11(2):102–113CrossRefGoogle Scholar
  33. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–764CrossRefGoogle Scholar
  34. Lee CM, Mittal A, Barnette AL, Kafle K, Park Y, Shin H, Johnson DK, Park S, Kim SH (2013a) Cellulose polymorphism study with sum-frequency-generation (SFG) vibration spectroscopy: identification of exocyclic CH2OH conformation and chain orientation. Cellulose 20(3):991–1000CrossRefGoogle Scholar
  35. Lee CM, Mohamed NMA, Watts HD, Kubicki JD, Kim SH (2013b) Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. J Phys Chem B 117(22):6681–6692CrossRefGoogle Scholar
  36. Lee CM, Kafle K, Park YB, Kim SH (2014) Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy. Phys Chem Chem Phys 16(22):10844–10853CrossRefGoogle Scholar
  37. McCann M, Wells B, Roberts K (1990) Direct visualization of cross-links in the primary plant cell wall. J Cell Sci 96(2):323–334Google Scholar
  38. Miyauchi Y, Sano H, Mirzutani G (2006) Selective observation of starch in a water plant using optical sum-frequency microscopy. J Opt Soc Am A 23(7):1687–1690CrossRefGoogle Scholar
  39. Müller M, Burghammer M, Sugiyama J (2006) Direct investigation of the structural properties of tension wood cellulose microfibrils using microbeam X-ray fibre diffraction. Holzforschung 60(5):474–479CrossRefGoogle Scholar
  40. Olsson A-M, Bjurhager I, Gerber L, Sundberg B, Salmén L (2011) Ultra-structural organisation of cell wall polymers in normal and tension wood of aspen revealed by polarisation FTIR microspectroscopy. Planta 233(6):1277–1286CrossRefGoogle Scholar
  41. Park YB, Lee CM, Koo B-W, Park S, Cosgrove DJ, Kim SH (2013) Monitoring meso-scale ordering of cellulose in intact plant cell walls using sum frequency generation spectroscopy. Plant Physiol 163(2):907–913CrossRefGoogle Scholar
  42. Patterson A (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978CrossRefGoogle Scholar
  43. Pilate G, Déjardin A, Laurans F, Leplé JC (2004) Tension wood as a model for functional genomics of wood formation. New Phytol 164(1):63–72CrossRefGoogle Scholar
  44. Ruelle J, Yamamoto H, Thibaut B (2007) Growth stresses and cellulose structural parameters in tension and normal wood from three tropical rainforest angiosperm species. BioResources 2(2):235–251Google Scholar
  45. Sahlberg U, Salmén L, Oscarsson A (1997) The fibrillar orientation in the S2-layer of wood fibres as determined by X-ray diffraction analysis. Wood Sci Technol 31(2):77–86CrossRefGoogle Scholar
  46. Scurfield G (1973) Reaction wood: its structure and function. Science 179(4074):647–655CrossRefGoogle Scholar
  47. Segal L, Creely J, Martin A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794CrossRefGoogle Scholar
  48. Shen Y-R (1984) The principles of nonlinear optics. Wiley, New YorkGoogle Scholar
  49. Sinnott EW (1952) Reaction wood and the regulation of tree form. Am J Bot 39:69–78Google Scholar
  50. Siqueira G, Bras J, Dufresne A (2008) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432CrossRefGoogle Scholar
  51. Spurr SH, Hyvärinen MJ (1954) Compression wood in conifers as a morphogenetic phenomenon. Bot Rev 20(9):551–560CrossRefGoogle Scholar
  52. Timell T (1969) The chemical composition of tension wood. Svensk Papp Tidn 72:173–181Google Scholar
  53. Timell TE (1986) Compression wood in Gymnosperms. Ecology of compression wood formation, silviculture and compression wood, mechanism of compression wood action, compression wood in the lumber and pulp and paper industries, compression wood induced by the balsam woolly aphid, opposite wood, vol 3. SpringerGoogle Scholar
  54. Wada M, Okano T, Sugiyama J, Horii F (1995) Characterization of tension and normally lignified wood cellulose in Populus maximowiczii. Cellulose 2(4):223–233CrossRefGoogle Scholar
  55. Wade J, Kachadorian W, DiScala V (1977) Freeze-fracture electron microscopy: relationship of membrane structural features to transport physiology. Am J Physiol Renal Physiol 232(2):F77–F83Google Scholar
  56. Wang H-F, Gan W, Lu R, Rao Y, Wu B-H (2005) Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS). Int Rev Phys Chem 24(2):191–256CrossRefGoogle Scholar
  57. Wang W, Chen X, Donohoe B, Ciesielski P, Katahira R, Kuhn E, Kafle K, Lee C, Park S, Kim S, Tucker M, Himmel M, Johnson D (2014) Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover Part 1: chemical and physical substrate analysis. Biotechnol Biofuels 7(1):57CrossRefGoogle Scholar
  58. Yeh T-F, Braun JL, Goldfarb B, Chang H-M, Kadla JF (2006) Morphological and chemical variations between juvenile wood, mature wood, and compression wood of loblolly pine (Pinus taeda L.). Holzforschung 60(1):1–8CrossRefGoogle Scholar
  59. Zhang T, Mahgsoudy-Louyeh S, Tittmann B, Cosgrove D (2014) Visualization of the nanoscale pattern of recently-deposited cellulose microfibrils and matrix materials in never-dried primary walls of the onion epidermis. Cellulose 21(2):853–862. doi: 10.1007/s10570-013-9996-1 CrossRefGoogle Scholar
  60. Zhao Z, Shklyaev OE, Nili A, Mohamed MNA, Kubicki JD, Crespi VH, Zhong L (2013) Cellulose microfibril twist, mechanics, and implication for cellulose biosynthesis. J Phys Chem A 117(12):2580–2589CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Kabindra Kafle
    • 1
  • Rui Shi
    • 2
  • Christopher M. Lee
    • 1
  • Ashutosh Mittal
    • 3
  • Yong Bum Park
    • 4
  • Ying-Hsuan Sun
    • 2
    • 5
  • Sunkyu Park
    • 6
  • Vincent Chiang
    • 2
  • Seong H. Kim
    • 1
  1. 1.Department of Chemical Engineering and Materials Research InstituteThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighUSA
  3. 3.National Renewable Energy LaboratoryGoldenUSA
  4. 4.Department of Biology, 208 Mueller LaboratoryThe Pennsylvania State UniversityUniversity ParkUSA
  5. 5.Department of ForestryNational Chung Hsing UniversityTaichungTaiwan
  6. 6.Department of Forest BiomaterialsNorth Carolina State UniversityRaleighUSA

Personalised recommendations