Advertisement

Cellulose

, Volume 21, Issue 4, pp 3073–3087 | Cite as

A versatile amphiprotic cotton fiber for the removal of dyes and metal ions

  • Jiaqing Xiong
  • Chenlu Jiao
  • Chenmei Li
  • Desuo Zhang
  • Hong Lin
  • Yuyue Chen
Original Paper

Abstract

Adsorption is an efficient method to combat the important issues of water pollution caused by dyes and metal ions. However, due to the surface charge diversity of pollutants, there is a pressing need to develop an all-round, efficient, cheap and environmentally friendly adsorbent. To this end, this work synthesized an amphiprotic adsorbent based on cotton fibers, which were chemically modified with a cationic monomer (3-chloro-2-hydroxypropyl trimethyl ammonium chloride) and anionic monomer (2-acrylamide-2-methyl propane sulfonic acid) respectively. The resultant amphiprotic cotton (AP-cotton) can cope with both of anionic and cationic pollutants. Its adsorption behavior as influenced by the pH value, adsorption time and initial concentration of various adsorbates was investigated. The results demonstrate that the adsorption equilibrium was reached within 4 h for Congo red (CR) and methylene blue (MB), 2 h for Cu2+ and 3 h for Pb2+, respectively. Adsorption kinetics showed that the adsorption rate was well fitted with the pseudo-second-order rate model, and the best adsorption isotherms fitted the Langmuir model. The Langmuir maximum adsorption capacities were 175.1 mg/g for CR, 113.1 mg/g for MB, 88.9 mg/g for Cu2+ and 70.6 mg/g for Pb2+, respectively, and the adsorption capacities could be maintained above 90 % after six regenerations. The all-round adsorption capacity and good regeneration performance of AP-cotton benefited from its hollow, flat-banded structure and amphiprotic characteristic. Therefore, AP-cotton exhibited a much better application potential compared with many other reported adsorbents based on natural materials.

Keywords

Cotton fiber Amphiprotic modification Adsorption Dyes Metal ions Regeneration 

Notes

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (no. 2012AA030313), Natural Science Foundation of Jiangsu Higher Education Institutions of China (no. 11KJB540002) and Suzhou City Key Technology R&D program (no. ZXS2012008).

Supplementary material

10570_2014_318_MOESM1_ESM.tif (300 kb)
The standard curves of CR aqueous solution (TIFF 299 kb)
10570_2014_318_MOESM2_ESM.tif (294 kb)
The standard curves of MB aqueous solution (TIFF 294 kb)

References

  1. Aber S, Sheydaei M (2012) Removal of COD from industrial effluent containing indigo dye using adsorption method by activated carbon cloth: optimization, kinetic, and isotherm studies. CLEAN-Soil Air Water 40:87–94. doi: 10.1002/clen.201000434 CrossRefGoogle Scholar
  2. Ahmad R (2009) Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). J Hazard Mater 171:767–773. doi: 10.1016/j.jhazmat.2009.06.060 CrossRefGoogle Scholar
  3. Aldegs Y, Elbarghouthi M, Elsheikh A, Walker G (2008) Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigment 77:16–23. doi: 10.1016/j.dyepig.2007.03.001 CrossRefGoogle Scholar
  4. Al-Ghouti MA, Li J, Salamh Y, Al-Laqtah N, Walker G, Ahmad MN (2010) Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent. J Hazard Mater 176:510–520. doi: 10.1016/j.jhazmat.2009.11.059 CrossRefGoogle Scholar
  5. Bai H, Xu Y, Zhao L, Li C, Shi G (2009) Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem Commun 1667–1669. doi: 10.1039/b821805f
  6. Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33:2469–2479CrossRefGoogle Scholar
  7. Batzias F, Sidiras D, Schroeder E, Weber C (2009) Simulation of dye adsorption on hydrolyzed wheat straw in batch and fixed-bed systems. Chem Eng J 148:459–472. doi: 10.1016/j.cej.2008.09.025 CrossRefGoogle Scholar
  8. Bhattacharyya KG, Sharma A (2005) Kinetics and thermodynamics of methylene blue adsorption on neem (Azadirachta indica) leaf powder. Dyes Pigment 65:51–59CrossRefGoogle Scholar
  9. Castro RSD et al (2011) Banana peel applied to the solid phase extraction of copper and lead from river water: preconcentration of metal Ions with a fruit waste. Ind Eng Chem Res 50:3446–3451. doi: 10.1021/ie101499e CrossRefGoogle Scholar
  10. Cay S, Uyanık A, Özaşık A (2004) Single and binary component adsorption of copper(II) and cadmium(II) from aqueous solutions using tea-industry waste. Sep Purif Technol 38:273–280CrossRefGoogle Scholar
  11. Chatterjee S, Chatterjee S, Chatterjee BP, Guha AK (2007) Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydrobeads: binding mechanism, equilibrium and kinetics. Colloids Surf A 299:146–152. doi: 10.1016/j.colsurfa.2006.11.036 CrossRefGoogle Scholar
  12. Cheng S (2003) Heavy metal pollution in China: origin, pattern and control. Environ Sci Pollut Res 10:192–198CrossRefGoogle Scholar
  13. Cherifi H, Fatiha B, Salah H (2013) Kinetic studies on the adsorption of methylene blue onto vegetal fiber activated carbons. Appl Surf Sci 282:52–59. doi: 10.1016/j.apsusc.2013.05.031 CrossRefGoogle Scholar
  14. Chowdhury S, Mishra R, Saha P, Kushwaha P (2011) Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 265:159–168CrossRefGoogle Scholar
  15. Demir H, Top A, Balköse D, Ülkü S (2008) Dye adsorption behavior of Luffa cylindrica fibers. J Hazard Mater 153:389–394CrossRefGoogle Scholar
  16. Duan C, Zhao N, Yu X, Zhang X, Xu J (2013) Chemically modified kapok fiber for fast adsorption of Pb2+, Cd2+, Cu2+ from aqueous solution. Cellulose 20:849–860. doi: 10.1007/s10570-013-9875-9 CrossRefGoogle Scholar
  17. Gao W, Majumder M, Alemany LB, Narayanan TN, Ibarra MA, Pradhan BK, Ajayan PM (2011) Engineered graphite oxide materials for application in water purification. ACS Appl Mater Interfaces 3:1821–1826. doi: 10.1021/am200300u CrossRefGoogle Scholar
  18. Gupta VK, Ali I (2008) Removal of endosulfan and methoxychlor from water on carbon slurry. Environ Sci Technol 42:766–770CrossRefGoogle Scholar
  19. Gupta V, Mittal A, Gajbe V, Mittal J (2006) Removal and recovery of the hazardous azo dye acid orange 7 through adsorption over waste materials: bottom ash and de-oiled soya. Ind Eng Chem Res 45:1446–1453CrossRefGoogle Scholar
  20. Gupta V, Carrott P, Ribeiro Carrott M, Suhas (2009) Low-cost adsorbents: growing approach to wastewater treatment—a review. Crit Rev Environ Sci Technol 39:783–842 Google Scholar
  21. Gupta VK, Agarwal S, Singh P, Pathania D (2013) Acrylic acid grafted cellulosic Luffa cylindrical fiber for the removal of dye and metal ions. Carbohydr Polym 98:1214–1221. doi: 10.1016/j.carbpol.2013.07.019 CrossRefGoogle Scholar
  22. Gurgel LVA, Freitas RP, Gil LF (2008a) Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by sugarcane bagasse and mercerized sugarcane bagasse chemically modified with succinic anhydride. Carbohydr Polym 74:922–929CrossRefGoogle Scholar
  23. Gurgel LVA, Júnior OK, Gil RPF, Gil LF (2008b) Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride. Bioresour Technol 99:3077–3083CrossRefGoogle Scholar
  24. Han R, Zhang L, Song C, Zhang M, Zhu H, Zhang L (2010) Characterization of modified wheat straw, kinetic and equilibrium study about copper ion and methylene blue adsorption in batch mode. Carbohydr Polym 79:1140–1149CrossRefGoogle Scholar
  25. Hu Z, Chen H, Ji F, Yuan S (2010) Removal of congo red from aqueous solution by cattail root. J Hazard Mater 173:292–297. doi: 10.1016/j.jhazmat.2009.08.082 CrossRefGoogle Scholar
  26. Ji F, Li C, Tang B, Xu J, Lu G, Liu P (2012) Preparation of cellulose acetate/zeolite composite fiber and its adsorption behavior for heavy metal ions in aqueous solution. Chem Eng J 209:325–333. doi: 10.1016/j.cej.2012.08.014 CrossRefGoogle Scholar
  27. Ji F, Li C, Xu J, Liu P (2013) Dynamic adsorption of Cu(II) from aqueous solution by zeolite/cellulose acetate blend fiber in fixed-bed. Colloids Surf A 434:88–94. doi: 10.1016/j.colsurfa.2013.05.045 CrossRefGoogle Scholar
  28. Jiang N, Xu Y, Dai Y, Luo W, Dai L (2012) Polyaniline nanofibers assembled on alginate microsphere for Cu2+ and Pb2+ uptake. J Hazard Mater 215:17–24CrossRefGoogle Scholar
  29. Júnior OK, Gurgel LVA, de Freitas RP, Gil LF (2009) Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse chemically modified with EDTA dianhydride (EDTAD). Carbohydr Polym 77:643–650CrossRefGoogle Scholar
  30. Karnitz O Jr, Gurgel LVA, De Melo JCP, Botaro VR, Melo TMS, Gil RPF, Gil LF (2007) Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresour Technol 98:1291–1297CrossRefGoogle Scholar
  31. Kim DH, Kim DW, Kim BH, Yang KS, Lim YK, Park EN (2013) Study of the adsorbent–adsorbate interactions from Cd(II) and Pb(II) adsorption on activated carbon and activated carbon fiber. J Korean Chem Soc 57:104–108. doi: 10.5012/jkcs.2013.57.1.104 CrossRefGoogle Scholar
  32. Kousha M, Daneshvar E, Sohrabi MS, Jokar M, Bhatnagar A (2012) Adsorption of acid orange II dye by raw and chemically modified brown macroalga Stoechospermum marginatum. Chem Eng J 192:67–76. doi: 10.1016/j.cej.2012.03.057 CrossRefGoogle Scholar
  33. Li Q, Zhai J, Zhang W, Wang M, Zhou J (2007) Kinetic studies of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by sawdust and modified peanut husk. J Hazard Mater 141:163–167. doi: 10.1016/j.jhazmat.2006.06.109
  34. Liu Y, Sun X, Li B (2010) Adsorption of Hg2+ and Cd2+ by ethylenediamine modified peanut shells. Carbohydr Polym 81:335–339CrossRefGoogle Scholar
  35. Liu Y, Wang J, Zheng Y, Wang A (2012) Adsorption of methylene blue by kapok fiber treated by sodium chlorite optimized with response surface methodology. Chem Eng J 184:248–255CrossRefGoogle Scholar
  36. Mall ID, Srivastava VC, Agarwal NK, Mishra IM (2005) Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses. Chemosphere 61:492–501. doi: 10.1016/j.chemosphere.2005.03.065
  37. Moussavi G, Khosravi R (2011) The removal of cationic dyes from aqueous solutions by adsorption onto pistachio hull waste. Chem Eng Res Des 89:2182–2189. doi: 10.1016/j.cherd.2010.11.024 Google Scholar
  38. Neghlani PK, Rafizadeh M, Taromi FA (2011) Preparation of aminated-polyacrylonitrile nanofiber membranes for the adsorption of metal ions: comparison with microfibers. J Hazard Mater 186:182–189CrossRefGoogle Scholar
  39. Ozdes D, Duran C, Senturk HB (2011) Adsorptive removal of Cd(II) and Pb(II) ions from aqueous solutions by using Turkish illitic clay. J Environ Manag 92:3082–3090CrossRefGoogle Scholar
  40. Park S, An J, Piner RD, Jung I, Yang D, Velamakanni A, Ruoff RS (2008) Aqueous suspension and characterization of chemically modified graphene sheets. Chem Mater 20:6592–6594CrossRefGoogle Scholar
  41. Park S, An J, Jung I, Piner RD, An SJ, Li X, Ruoff RS (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593–1597CrossRefGoogle Scholar
  42. Purkait MK, Maiti A, DasGupta S, De S (2007) Removal of congo red using activated carbon and its regeneration. J Hazard Mater 145:287–295. doi: 10.1016/j.jhazmat.2006.11.021 CrossRefGoogle Scholar
  43. Qu R, Sun C, Wang M, Ji C, Xu Q, Zhang Y, Yin P (2009) Adsorption of Au(III) from aqueous solution using cotton fiber/chitosan composite adsorbents. Hydrometallurgy 100:65–71. doi: 10.1016/j.hydromet.2009.10.008 CrossRefGoogle Scholar
  44. Reddad Z, Gerente C, Andres Y, Le Cloirec P (2002) Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environ Sci Technol 36:2067–2073CrossRefGoogle Scholar
  45. Ren Y, Yan N, Wen Q, Fan Z, Wei T, Zhang M, Ma J (2011) Graphene/δ-MnO2 composite as adsorbent for the removal of nickel ions from wastewater. Chem Eng J 175:1–7. doi: 10.1016/j.cej.2010.08.010 CrossRefGoogle Scholar
  46. Roy A, Chakraborty S, Kundu SP, Adhikari B, Majumder SB (2012) Adsorption of anionic-azo dye from aqueous solution by lignocellulose-biomass jute fiber: equilibrium, kinetics, and thermodynamics study. Ind Eng Chem Res 51:12095–12106. doi: 10.1021/ie301708e CrossRefGoogle Scholar
  47. Roy A, Adhikari B, Majumder SB (2013) Equilibrium, kinetic, and thermodynamic studies of azo dye adsorption from aqueous solution by chemically modified lignocellulosic jute fiber. Ind Eng Chem Res 52:6502–6512. doi: 10.1021/ie400236s CrossRefGoogle Scholar
  48. Saad S, Isa KM, Bahari R (2010) Chemically modified sugarcane bagasse as a potentially low-cost biosorbent for dye removal. Desalination 264:123–128CrossRefGoogle Scholar
  49. Sajab MS, Chia CH, Zakaria S, Jani SM, Ayob MK, Chee KL, Chiu WS (2011) Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution. Bioresour Technol 102:7237–7243CrossRefGoogle Scholar
  50. Senthil Kumar P, Ramalingam S, Senthamarai C, Niranjanaa M, Vijayalakshmi P, Sivanesan S (2010) Adsorption of dye from aqueous solution by cashew nut shell: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination 261:52–60. doi: 10.1016/j.desal.2010.05.032
  51. Shi W, Tao S, Yu Y, Wang Y, Ma W (2011) High performance adsorbents based on hierarchically porous silica for purifying multicomponent wastewater. J Mater Chem 21:15567–15574CrossRefGoogle Scholar
  52. Shrestha S, Son G, Lee SH, Lee TG (2013) Isotherm and thermodynamic studies of Zn(II) adsorption on lignite and coconut shell-based activated carbon fiber. Chemosphere 92:1053–1061. doi: 10.1016/j.chemosphere.2013.02.068 CrossRefGoogle Scholar
  53. Siddiqi Z, Pathania D (2002) Studies on heavy metals in surface and ground water of Jalandhar and Ludhiana districts. Indian J Environ Prot 22:201–206Google Scholar
  54. Sui K, Li Y, Liu R, Zhang Y, Zhao X, Liang H, Xia Y (2012) Biocomposite fiber of calcium alginate/multi-walled carbon nanotubes with enhanced adsorption properties for ionic dyes. Carbohydr Polym 90:399–406. doi: 10.1016/j.carbpol.2012.05.057 CrossRefGoogle Scholar
  55. Tang H, Zhou W, Zhang L (2012) Adsorption isotherms and kinetics studies of malachite green on chitin hydrogels. J Hazard Mater 209–210:218–225. doi: 10.1016/j.jhazmat.2012.01.010 CrossRefGoogle Scholar
  56. Tian Y, Wu M, Liu R, Wang D, Lin X, Liu W, Huang Y (2011) Modified native cellulose fibers–a novel efficient adsorbent for both fluoride and arsenic. J Hazard Mater 185:93–100. doi: 10.1016/j.jhazmat.2010.09.001 CrossRefGoogle Scholar
  57. Vieira AP, Santana SA, Bezerra CW, Silva HA, Chaves JA, de Melo JC, Airoldi C (2009) Kinetics and thermodynamics of textile dye adsorption from aqueous solutions using babassu coconut mesocarp. J Hazard Mater 166:1272–1278. doi: 10.1016/j.jhazmat.2008.12.043 CrossRefGoogle Scholar
  58. Wang S, Zhu Z (2007) Effects of acidic treatment of activated carbons on dye adsorption. Dyes Pigment 75:306–314CrossRefGoogle Scholar
  59. Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4:1790–1798CrossRefGoogle Scholar
  60. Waranusantigul P, Pokethitiyook P, Kruatrachue M, Upatham ES (2003) Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza). Environ Pollut 125:385–392. doi: 10.1016/s0269-7491(03)00107-6 CrossRefGoogle Scholar
  61. Xia Y, Li T, Chen J, Cai C (2013) Polyaniline (skin)/polyamide 6 (core) composite fiber: preparation, characterization and application as a dye adsorbent. Synth Met 175:163–169. doi: 10.1016/j.synthmet.2013.05.012 CrossRefGoogle Scholar
  62. Xu S-M, Feng S, Peng G, Wang J-D, Yushan A (2005) Removal of Pb(II) by crosslinked amphoteric starch containing the carboxymethyl group. Carbohydr Polym 60:301–305CrossRefGoogle Scholar
  63. Yin QF, Ju BZ, Zhang SF, Wang XB, Yang JZ (2008) Preparation and characteristics of novel dialdehyde aminothiazole starch and its adsorption properties for Cu(II) ions from aqueous solution. Carbohydr Polym 72:326–333CrossRefGoogle Scholar
  64. Zhang M (2011) Adsorption study of Pb(II), Cu(II) and Zn(II) from simulated acid mine drainage using dairy manure compost. Chem Eng J 172:361–368. doi: 10.1016/j.cej.2011.06.017 CrossRefGoogle Scholar
  65. Zhang W, Zhou C, Zhou W, Lei A, Zhang Q, Wan Q, Zou B (2011) Fast and considerable adsorption of methylene blue dye onto graphene oxide. Bull Environ Contam Toxicol 87:86–90. doi: 10.1007/s00128-011-0304-1 CrossRefGoogle Scholar
  66. Zhang W, Yang H, Dong L, Yan H, Li H, Jiang Z, Cheng R (2012) Efficient removal of both cationic and anionic dyes from aqueous solutions using a novel amphoteric straw-based adsorbent. Carbohydr Polym 90:887–893CrossRefGoogle Scholar
  67. Zhao J, Pei S, Ren W, Gao L, Cheng H-M (2010a) Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 4:5245–5252CrossRefGoogle Scholar
  68. Zhao P, Jiang J, Zhang F-W, Zhao W-F, Liu J-T, Li R (2010b) Adsorption separation of Ni(II) ions by dialdehyde o-phenylenediamine starch from aqueous solution. Carbohydr Polym 81:751–757CrossRefGoogle Scholar
  69. Zhao G, Li J, Ren X, Chen C, Wang X (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45:10454–10462. doi: 10.1021/es203439v CrossRefGoogle Scholar
  70. Zheng Y, Wang W, Huang D, Wang A (2012) Kapok fiber oriented-polyaniline nanofibers for efficient Cr(VI) removal. Chem Eng J 191:154–161CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jiaqing Xiong
    • 1
  • Chenlu Jiao
    • 1
  • Chenmei Li
    • 1
  • Desuo Zhang
    • 1
  • Hong Lin
    • 1
  • Yuyue Chen
    • 1
  1. 1.College of Textile and Clothing EngineeringSoochow UniversitySuzhouPeople’s Republic of China

Personalised recommendations